
NSF ripper Guide Intro

Author of this guide is Gil Galad, and you can find it on http://gilgalad.arc-nova.org/intro.html,

but to make sure, that this guide suddenly won’t disappear from the internet, I had copy each

lesson to this PDF file. So maybe, one day, it will come handy.

About this PDF

Author: Gil Galad // http://gilgalad.arc-nova.org/intro.html

Twierdza RPG Makera (RPG Maker Stronghold) // www.rpgmaker.pl

NSF ripper Guide Intro

This is a guide to ripping NSF's in a detailed manner.

A NSF is a sound format file that has been ripped from a NES game system

ROM. The

process of ripping a NSF from the ROM image requires careful study and

detailed observation.

The sound is often independent from the other code in the game and can be

removed for play in a

NSF file.

As many know the entire program is encoded on the game cartridge ROM. You

have your PRG (program

ROM) that is encoded on a chip along with your sound driver that is

embedded in the PRG in most cases.

The sound driver is then extracted in all it's 5 channels and can be heard

with a NSF player.

Kevin Horton and Chris Covell are the ones that started the NSF format and

we are very grateful to them

for the creation of this format. Upon hearing NSF's for the first time you

will appreciate the emulated sound

Coming from the player. And thanks for that.

It is well worth ripping NSF's when you understand how great they sound.

In order to extract the data you must analyze the data. And this is where

this NSF ripping guide

will come in handy.

This guide assumes that you know nothing about NSF ripping and even a

beginner can rip NSF's eventually

after reading and using this guide.

After reading this guide you should be able to rip NSF's and you will

become the "ripper"

And now we will start to view NES ripping on an intellectual level. Starting with

the very basics and working our way to more detailed matters. Starting with the 3

main address calls in a NSF.

 init: This is where your tune number is set and this routine also changes your

tune. Also initializes memory addresses.

 play: This is your basic sound driver and is usually found in your NMI

interrupt.

 load: This is the start of your program or bank and is often $8000.

With these 3 areas being described you can analyze the data more closely in these

areas

Also you should study Family Computer references as needed when analyzing the

data

And as far as the contents are concerned, you will find some errors perhaps.

All the information you can get will help you.

NOTE:

This guide is an adaptation of the original NSF Ripping guide. The original was

written by Izumi and is in Japanese. I have translated quite abit of the guide and

also rewrote some of the guide and changed some of the data so that it's more

accurate. Also this guide was written quite some time ago and now I have figured

out new methods and also there is better tools that you can use and this doc will

reflect this.

So you have 20 levels of NSF ripping where the lower levels are easy to rip and the

higher levels get really hard. For each level I will show you how to rip them and in

some cases I will let you do the work instead of giving you the answer.

We will start you out at level 0. Level 0 is preparation. In this level you will begin

and gather tools and docs. You will also learn about the format and other things.

Yes, you gotta start somewhere and so this ends the introduction.

INDEX
LEVEL0 Preparation ... 5

LEVEL1 CAPCOM(1943) .. 8

LEVEL 2 DATA EAST Glory of Hercules 2 (Herakles no Eikou 2) ... 10

LEVEL 3 Sun Electronics Corp. Shanghai II (DPCM) ... 13

LEVEL 4 Technos Japan Double Dragon 2 The Revenge .. 18

LEVEL 5 Technos Japan River City Ransom ... 20

LEVEL 6 Hudson Hector 87 ... 23

LEVEL 7 Nintendo Wrecking Crew ... 25

LEVEL 8 Chunsoft Tetris 2 + Bombliss ... 28

LEVEL 9 Cony World Heroes 2 ... 29

LEVEL 10 Human Creative Egypt.. 31

LEVEL 11 Carry Lab Mystery Quest ... 32

LEVEL 12 Optimizing .. 32

LEVEL 13 Free Lance Ripping ... 36

LEVEL 14 NSF Repair/Clean-up .. 43

LEVEL 15 Nintendo - Backgammon FDS .. 47

LEVEL 16 Tokuma Shoten - Clox - Famimaga Disk Vol. 4 FDS .. 50

LEVEL 17 Takara - Transformers The Head Masters FDS .. 54

LEVEL 18 Bankswitching .. 58

NSF Reference Data

Family Computer NSF Spec Mapper Registers 6502 Guide Opcodes

APU Reference NES Audio Ripping

http://gilgalad.arc-nova.org/nsf_level/ndox200.zip
http://gilgalad.arc-nova.org/nsf_level/nsfspec.txt
http://gilgalad.arc-nova.org/nsf_level/mappers.zip
http://gilgalad.arc-nova.org/nsf_level/6502guide.txt
http://gilgalad.arc-nova.org/nsf_level/6502.html
http://gilgalad.arc-nova.org/nsf_level/apu_ref.txt
http://gilgalad.arc-nova.org/nsf_level/nsfr.txt

LEVEL0 Preparation

Start gathering the tools!!

 Hex Editor.......................I recommend Hex Workshop

 Split/join file utility..........Being able to join and split 4KB - 32K and more is

a must

 6502 Disassembler.................A disassembler that is specifically for the NES

is a must.

 NSF Player.......................There is several NSF players out there. Each are

alittle different.

 NES2NSF v0.9.....................NSF ROM ripping tool (partial translated

version for download)

 DCC6502..........................A 6502/NES specialized disassembler that is

helpful in NSF ripping.

The first thing you want to do is get a NSF player and a couple of NSF's. Go

to Zophar's Domain to get all the NSF's and NSF players you want. You can also

get NSF's here on my page Gil_Galad.

As far as the players are concerned you could chose several. NotsoFatso is

supposedly one of the best Winamp plugins. I have no idea since it's way too slow

to run on my pc. If you have a slow pc you might want to get Nosefart. Nosefart is

not an accurate player at all, the player was designed to run on low end systems like

mine and it sacrifices a lot of accuracy to do so. You also have stand alone NSF

players like GNSF. GNSF is a good player and has some tools that you can use.

You have a menu with a sound channel meter and you turn the channels off and on

if you wish. You can also tell what channel is missing in your rip. SlickNSF is also

a good stand alone player because you can dump a trace log which helps so much

in debugging the NSF's code.

You also have emulators that support NSF playing.

FCEUD,Nesten,VirtuaNES,Nintendulator has built in NSF players. Most of them

has some type of 6502 debugging tool. FCEUD is about the best NES debugger

you can get. Nesten also has a debugger and can dump ram which is useful in

trapping the right banks with music code/data. Nintendulator has a trace logger and

can dump the trace. Also if you have problems with your NSF then Nintendulator

will not play the NSF. What will happen is that you will get an error message

http://gilgalad.arc-nova.org/nsf_level/nes2nsfe.zip
http://www.zophar.net/
http://gilgalad.arc-nova.org/index.html

saying the you have a NSF that's corrupted or has raw PCM. In most cases you

have a routine in the code that is timing out and doesn't return in so many frames.

This is useful because after you fix the problem the NSF will run on just about any

player.

Make sure that when you chose a player that has support for the expansion sound

chips. Here is the expansion sound chip format and the only ones you will find left

to rip are FDS disks and some FDS games dont have FDS expansion sound so be

aware of that. Very few players support all sound chips so look around.

 VRC VI - Konami

 VRC VII - Konami

 N106 - Namco

 FME-07 - Sunsoft

 MMC5 - Nintendo - Various companies

 FDS - Various companies

Pre-preparation Analysis

Prepare Header
The 128 byte header is used to prepend to the data that you have ripped.

Remove the NES header
The 16 byte header is what emulators use to run the ROM. However this

header is not needed nor used in the actual cartridge. If the header is not

removed then the banks will be off by 16 bytes.

When NES2NSF is used. It's as simple as it gets. Also with this tool you don't need

to remove the 16 byte NES header. A 128 byte NSF header is added to every 16K

bank ripped from the ROM. You cannot use UNIF format NES roms with this tool.

The NSF Header

You must use this header for NSF compiliation. Provided is the NESM header

format and in detail.
offset # of bytes Function

0000 5 STRING "NESM",01Ah ; NSF standard indication.

0005 1 BYTE Current NSF version number. Presently 1

0006 1 BYTE Number of tracks

0007 1 BYTE Starting track

0008 2 WORD load(lo/hi) Load address of data memory range:

(8000-FFFF)

000A 2 WORD init(lo/hi) Start of initialization data memory range:

(8000-FFFF)

000C 2 WORD play(lo/hi) Start of driver data memory range:

(8000-FFFF)

000E 32 STRING Name of game or song

002E 32 STRING Name of artist or songwriter

004E 32 STRING Name of the copywrite holder

006E 2 WORD (lo/hi) This is the NTSC playback speed. 411A is usually

just fine.

0070 8 BYTE Bankswitching Init 8 bit value. Explained in better

detail later.

0078 2 WORD (lo/hi) This is the PAL playback speed.

007A 1 BYTE PAL/NTSC The following bits are set for either a PAL or

NTSC game.

 bit 0: if clear, this is an NTSC tune

 bit 0: if set, this is a PAL tune

 bit 1: if set, this is a dual PAL/NTSC tune

 bits 2-7: Not used and must be 0's

007B 1 BYTE Special sound chip support

 bit 0: 1 = Konami VRC6

 bit 1: 1 = Konami VRC7

 bit 2: 1 = Nintendo FDS

 bit 3: 1 = Nintendo MMC5

 bit 4: 1 = Namcot 106

 bit 5: 1 = Sunsoft FME7

 bits 6-7: Currently unused. For future expansion. More

sound chips out there possibly.

007C 4 ---- 4 extra bytes for expansion (must be 00h)

0080 nnn ---- The ripped data goes here.

 (lo/hi)Data in the header is used in this fashion. The playback speed is one of

them. 411A is the speed, however you

would switch the bytes to 1A41

 These 6 bytes of the load/play/init are treated as (lo/hi) as above.

 For those 6 important bytes it's easy to make a mistake. So make sure you

get them in the proper (lo/hi) order.

LEVEL1 CAPCOM(1943)

When you read the NES Music Ripping Guide you will understand that many

games have the load/play/init addresses set at 8000/8003/8000.1943 is one of these

games and is simplicity in itself. What your going to do is take a 16KB bank from

the rom. This bank should be 16,384 bytes. Bank 005 should be the right bank with

the music data. Attach the header to the 16KB bank that you ripped and then set the

8000(load)/8003(init)/8000(play) addresses in the header respectively. 01 is the

starting track where you hear music.

And now this makes you a Level 1 NSF ripper. With this level out of the way be

prepared to advance in difficulty and a sense of acomplishment.

Let's discuss bank sizes for a moment. This is important to learn as you will learn

that NES games load different size banks into memory. What is loaded is the

PRG(Program ROM) banks into memory. Depending on the mapper the banksize

select can be different. Mapper 0 is not actually a mapper, this is the standard 32K

PRG that is loaded into memory at addresses $8000 - $FFFF, there is also a mapper

0 16K version as well $C000 - $FFFF. You do have some mappers that are 32KB

bank size select and one mapper is mapper 7. The most common bank sized select

is 16KB and usually that's mapper 1 or MMC1. And you have 8KB banksized

select which is many mappers,the most common mapper is mapper 4 or MMC3.

And last but not least is the NSF mapper. The banksize select of a NSF is 4KB.

Here is a table for the banksizes.

 4KB - NSF bank size select - 1000

 8KB - MMC3 and others - 2000

 16KB - Mapper 0,most games like MMC1 - 4000

 32KB - Mapper 0,Mapper 7,Mapper 3 and others - 8000

Now is the time to talk about using nes2nsf.The app is a program written by a

Japanese guy and I've taken the time to partially translate it. This utility is a very

useful tool and is used to rip banks from the NES ROM. You can divide the entire

rom up in banks that you select in the program or you can choose an option that

allows you to rip certain banks from the rom. The split banks that are output from

nes2nsf are numbered from 0 - nn(however many banks is in the rom depending on

the banksize). You can set an option in the program that will only rip certain banks

based on the sound enable register 4015. If you have a write to that sound register

then you will get only those banks. Now for some specifics about the program. You

have a .ini file which is a config file for nes2nsf and I will show you how to set the

bits of the program on this .ini file.

1000100000000000

This is the default setting of the program and as you can see there is 16 bits here

and I give you a brief explanation of what you need to use right now.

 bit 0 - If this is a 1 then the program prepends a NSF header to the rip.

 bit 1 - This is where you set the banksize for the output of the program.

 bit 3 - must always be a 0

 bit 4 - if 8D1540 is found then a file is output ; STA $4015 ; 0 = OFF 1 =

ON

 bit 5 - if 8E1540 is found then a file is output ; STX $4015 ; 0 = OFF 1 = ON

 bit 6 - if 8C1540 is found then a file is output ; STY $4015 ; 0 = OFF 1 =

ON

 bit 7 - if 1540 is found then a file is output ; 0 = OFF 1 = ON

 bit 08-0D are always 0

So you use nes2nsf for the game 1943 with the default setting enabled in the .ini

file and nes2nsf will output bank # 05 which is the right bank with the music data.

The header will also be prepended if you left the settings the same. So you can load

the NSF in your player and WOW it works and plays. The beginning track is #1

and you need to count the tracks in the NSF and set the bit in the header to reflect

this. You use the hexadecimal number system so you set the byte in the header with

a hex editor. Look back at Level 0 and you will see the header and so you look at

the data there and figure out what offset to change the ending tune at and I will tell

you the first time. 06h and the "h" stands for offset. Dont even try to submit this

NSF, It's already been ripped. :)

LEVEL 2 DATA EAST Glory of Hercules 2

(Herakles no Eikou 2)

Now we are going to get down and dirty with some hex hacking and a lot of these

techniques you will use over and over again. First you will use nes2nsf to extract

the bank and then load up the NSF in a hex editor. You will learn to make a

boostrap code and arrange the tunes. Also you you learn learn about some of the

guidelines of NSF ripping.

What are you waiting for go ahead and rip the bank from the rom with nes2nsf.

Sometimes more then one bank will be outputted, however you will only get one

bank with the default settings and that's the right bank. The bank 013 and this bank

will be 16KB and already has a header prepended so you're ready to rock.

First try to play the NSF and you will notice that you don't get any sound or with

other players you may get some bleeps and that's it. So load the NSF up in a hex

editor, we need to fix this problem. You will see tons of numbers and is rather

confusing if you don't normally do hex editing. However we will make some sense

of this today. If you remember the NSF header is 128 bytes and the range of the

header viewable in a hex editor is 0h - 7Fh , the actual PRG area that you extracted

will be 80h - 4080h. So you are going to look right after the header and you will see

a series of 9 bytes. These bytes are code and mean something. So you see these

bytes 4C 11 80 4C 1C 81 4C B4 81 are the first bytes you see after the header and

like I said they do mean something. This is code and so 4C means JMP, JMP is a

opcode that jumps to a certain address. In this case you have the bytes 4C 11 80 ,

So you have JMP $8011, jump to address $8011. And yes with addresses you have

to switch the bytes like I just did. This is a format used by many CPU's. What I'm

going to do is translate the data for you and assign addresses for each operation so

it's easy to understand.

Address Data Opcode Operand

$8000 4C 11 80 JMP $8011

$8003 4C 1C 81 JMP $811C

$8006 4C B4 81 JMP $81B4

What you want to do now is change the addresses in the header because the NSF

doesn't play yet. The load address is at offset 08h - 09h and is 2 bytes, remember

always that a PRG address is always 2 bytes. The Load address in the header is the

origin of the program and that tells the NSF player where to start loading the data.

In this case the load will be at $8000 in CPU memory and starts at offset 80h in the

NSF. The 2 bytes in the header at 0Ch - 0Dh are the play address. The play address

is what updates the audio hardware and is called thousands of times. The 2 bytes at

0Ah - 0Bh is the init address. The init address is the code that changes the tune and

initializes memory addresses and sets up data blocks sometimes. This address is

called once before the tune plays.

The current addresses in the header are 8000(load)/8003(play)/8000(init). However

the NSF doesn't play so you have to change them. Looking at the code I translated

for you, you can change the addresses based on the code I have there. Leave the

load address the same and don't change it. Just switch the play and init addresses. If

you change the init to $8003 and the play to $8006 then you will get something and

these are just sound effects. You can switch the tunes in your NSF player and you

will never run into music, just sound effects. So I will show you what to do about

that. You have to write some code and it's easy once you get used to it. I will tell

you what the bytes are and then after this you will need to look the opcodes up in

the reference data that I have provided in Level 0.

48 PHA ; Push Accumulator to the stack (you save A so it doesn't get

changed)

20 00 80 JSR $8000 ; jump save return to bootstrap code

68 PLA ; Pull Accumulator from stack (you bring back the number you

saved)

4C 03 80 JMP $8003 ; jump to init

Next you want to know where to place the code. Since you have a 16K bank

extracted and not the entire 32K you can place the code at the end of the bank. Note

you cannot exceed this area if you have a 32K bank unless you have

bankswitching. If you have a 32K bank then you must find free space somewhere

in the NSF.

We can place the code at offset 4080h in the NSF. This is at the end of the bank. If

you have Hex Workshop you have to be in insert mode to add bytes to the end of

the file. Type in the following bytes at that offset 48 20 00 80 68 4C 03 80 and you

are about ready to try the NSF. However you must change the address in the header

because you had to use code before going to the real init address.

I have a simple formula for figuring out the address of the code based on what

offset you placed the code. Offset -80(header) + load address. You placed the code

at 4080h in the NSF. So you subtract 80 and so you get 4000. Next you add 8000 to

this because that's your load address. The final address is $C000. So put 00C0 in

the header at the init address place. So now you fire up the NSF, and what the heck

the sound effects are still there, keep switching the tunes and you will run into the

music tunes. Listen to them abit if you want, however you can't leave the tunes at

the back of the NSF. You have to arrange the tunes and I will show you how to do

this as well.

First of all start playing the NSF and go to the first music tune and write down the

number of each tune that you play on notepad or something like it. You need to do

this because there is some sound effects and silence spaces in the NSF and so you

have to get those out of there. So you put the tunes in the front and sound effects to

the back of the NSF, this is a guideline of the format and should be followed. I

eliminate the sound effects myself. However I shall show you how to add them as

well.

The order of the tunes is as follows: 28-39,41-43,45-46. The order of the sound

effects is as follows: 6-25,40,44,47. What you do is open a calculator and make

sure it's in decimal mode and convert the number to hex and subtract one from it

because the tunes actually start at 00 that is loaded into the accumulator. And now

you have to write some code and you place this code once again at $C000 (4080h

in the NSF). It's ok you can overwrite the code I gave you before because I'm going

to integrate the bootstrap into the tune arrangement code.

TAX

LDA $C00C,X ; load tune index that you arranged, point this address to the

tune index.

PHA

JSR $8000

PLA

JMP $8003

.db 1B,1C,1D,1E,1F,20,21,22,23,24,25,26,28,29,2C,2D,05,06,ETC.

You see this code here. I will explain it some so that it doesn't completely confuse

you. You have the tune arrangement code and then the bootstrap right after this.

You also have a line here that starts with .db and has bytes listed after it. These are

the tune numbers that you arranged. Make sure that you don't type .db in the hex

editor lol. So you would type in the following bytes at the CPU address $C000 in

the NSF or 4080h offset. AA,BD,0C,C0,48,20,00,80,68,4C,03,80,1B,1C,1D,1E,1F,

20,ETC.

Now play the NSF and you will notice this is some really nice music and soothing.

And the tunes are in order and the sound effects are to the back. However you need

to do one more thing and that's to fill out the header information. The Title of the

NSF(game name),Artist or composer,and Company name that programmed the

game. You need to get a relative search program or get a hex editor with table file

support to search the game for text. I will not get into how to make a table file or

using the programs as that's covered really well elsewhere. Bring the header specs

up that I showed you in Level 0 and find the offsets for the title,composer,company

and fill in the data. You can only type in so much and you cant type so far that you

mess up the next entry in the header so be careful.

Most Data East games have the music driver stored like this and usually that

bootstrap code that I showed you is actually called from the reset interrupt code,

more about that later.

This is a level that was written completely by me Gil Galad. I ripped this NSF

awhile back and you can't submit it yourself. All rips in this guide have already

been submitted.

LEVEL 3 Sun Electronics Corp. Shanghai

II (DPCM)

In Level 3 you're going to learn how to use a disassembler, learn about the NES

sound registers and rehashing some methods used in the last couple of levels.

Go find the disassembler DCC6502. This disassembler has many usefull options

for NES and other 6502 CPU's. You can also use this for FDS disassembling. All

you have to do is set the origin and that helps in being able to use any memory

architecture of any 6502 CPU.

First of all you might want to create a folder for NSF compilation. I usually place

this folder on the desktop. Within this directory I place 3 folders and all the utilities

I need. These 3 folders should be complete,docs, and work. Any rips that you are

frustrated with you can place in the work folder and come back to them later. All

the complete NSF's go in the complete folder. All your docs you have as reference

can go there.

So you get DCC6502 and place this disassembler in that folder. Also you need

edit.com. You can find this program somewhere in windows, just search for it and

place it in this folder. You can also get NSFTool at Zophar's Domain in the

Utility/general/Nitendo section. I usually prefer to edit the basics of the header in a

hex editor myself. Make sure that you have nes2nsf in the folder as well. What I

usually do is include some emulators in the folder as well. What I do is make a

folder for each one and place the contents in their respective folders. I do this to

keep the files down in the main folder.

Now you get to do some .bat file programming. Don't worry this is really easy and

the very basics. Make 2 new text files in the main folder and rename the first one

asm.bat and the second one edit.bat. After you have done this right click on asm.bat

and click edit. So you have a blank note pad. What you type here is DCC6502 -h -n

-o8000 filename.DMP >> filename.asm . This is your bat file to run the

disassembler DCC6502 based on what you typed in the .bat file. Next you right

click on edit.bat and type in EDIT filename.asm and you're done. You have to

change the file name all the time depending on what game you're messing with. I

usually rename them in DOS format with 8 characters or less to make it easy.

The options was set on the .bat for DCC6502 are as follows. -h is hex output and

you need this there because it tells you the bytes of the opcode and operation. -n is

Nintendo register commenting and is useful in knowing what areas of code do

what. If you see a write to $2006 then more then likely this is not a sound driver

area. And the next one -0xxxx is what you set the origin of the disassembly output.

If the start of the code is CPU address $8000 then you set it at -o8000. With FDS

rips you can set the origin at $6000 since that is where PRG RAM starts. After all

this is the file you want to disassemble and last but not least is >> and after that is

the disassembly and you should name the extension .asm.

Now comes the time to learn some NES sound registers. $4015 is the sound enable

register and turns on and off the sound channels. There is 5 channels in the NES.

You have to write a byte to $4015 to enable or disable certain channels. If you are

familiar with the bits of a hex byte then this should make sense.

First of all when you designate a value to the A register you are turning ON/OFF

the sound register. A91F8D1540 The following routine.

A9 1F LDA #$1F When you have 1F in the A register and then convert

this value to binary you get 00011111

8D 15 40 STA $4015 Store your value in A that is 1F to address 4015.

4015 When you set bits---abcde(00011111)You're actually turning all

the 5 channels ON.

By the way here is the 5 channels.

Channels

1(e) Square #1

2(d) Square #2

3(c) Triangle

4(b) Noise

5(a) DPCM (Delta Modulation)

Now I will list the sound registers and what channel they are associated

with.

Square 1/Square 2

$4000/4 ddle nnnn duty, loop env/disable length, env disable, vol/env

period

$4001/5 eppp nsss enable sweep, period, negative, shift

$4002/6 pppp pppp period low

$4003/7 llll lppp length index, period high

Triangle

$4008 clll llll control, linear counter load

$400A pppp pppp period low

$400B llll lppp length index, period high

Noise

$400C --le nnnn loop env/disable length, env disable, vol/env period

$400E s--- pppp short mode, period index

$400F llll l--- length index

DMC

$4010 il-- ffff IRQ enable, loop, frequency index

$4011 -ddd dddd DAC

$4012 aaaa aaaa sample address

$4013 llll llll sample length

Common

$4015 ---d nt21 length ctr enable: DMC, noise, triangle, pulse 2, 1

$4017 fd-- ---- 5-frame cycle, disable frame interrupt

Status (read)

$4015 if-d nt21 DMC IRQ, frame IRQ, length counter statuses

As you can see these are the sound channels. Don't panic you don't have to absorb

all of this right away. Just be kinda familiar with them.

Now we are going to do the rip after all that. First of all look at the .ini file for

nes2nsf. Set bit 0F to 1 and run the program. Load up Shanghai 2. You will see a

display come up and it will tell you it's a write to 4015, this is a part of the program

I couldn't translate because I don't have the source yet. Check up above for a very

vague description of 4015. Everytime nes2nsf stops you will see a menu and it will

tell you the CPU address location of the write each time nes2nsf runs into one in

the PRG.

Now go ahead and use nes2nsf to rip a NSF from Shanghai 2. You will notice that

the menu comes up with option 0F set. You will notice that a write to $4015 is

found at the following CPU addresses $800C,$8030,$8796,$879B. If you want to

find these in the NSF use the following formula. -8000 +80 = NSF Offset in a hex

editor. You will see the bytes 8D1540.

You will notice that the bank 002 is ripped with the file name Shanghai

2(J)_002.nsf. Try to play the NSF and it won't play at all. So we should

disassemble the bank and see what the problem is. First you have to remove the

NSF header in order to disassemble the bank. The header is in the range of 0h -

7Fh, Don't remove 80h and past that offset. Do this with a hex editor. Rename the

file without the header shang.DMP . Change the asm.bat file contents to DCC6502

-h -n -o8000 >>shang.asm. And change edit.bat contents to Edit shang.asm and

click on the asm.bat, if you don't have any errors then you did it. Wait for a second

or 2 then click on edit.bat and you should see a DOS text window come up with the

banks disassembly.

You should see the following code if you did the disassembly right.

8000 : 02 db $02 ; invalid op

8001 : 4C 6E 81 JMP $816E ;

8004 : 4C A6 80 JMP $80A6 ;

8007 : 4C 0A 80 JMP $800A ;

800A : A9 1F LDA #$1F ;

800C : 8D 15 40 STA $4015 ; Sound control

800F : A9 00 LDA #$00 ;

8011 : 8D 10 40 STA $4010 ; PCM Control reg.

Remember the Level 1 with the load/init/play addresses are 8000/8003/8000 and

about the same as level 2 with the JMP's as well except you don't have to do the

bootstrap code. However the .db(data byte) at CPU address $8000 is throwing the

order of the JMP's off. That byte is actually the bank number, however moving on.

So you have JMP's at $8001,$8004,$8007. Change the load/init/play addresses in

the header to 8000/8004/8001 and load the NSF up and wow it plays. However you

don't hear the DPCM and I will get to that problem next. Also remember to look at

the addresses that nes2nsf gave you for the writes to $4015 and look at some of the

other sound writes and look at the description above and you can even check out

the APU reference. This will help you in the long run so you should do it.

So you have a rip that works and is missing the DPCM. This rip would be labeled

as Incomplete in the composer info in the header if you could not fix it. However I

do have a solution. First rename the NSF rip to shang.nsf to keep it from being

overwritten because you're going to use nes2nsf again.

You might be somewhat familiar with mappers and this game is mapper 2. Mapper

2 swaps banks at $8000 - $BFFF and the bank at $C000 - $FFFF is hardwired and

never changes. The hardwired bank comes from the last PRG bank in the rom right

before the CHR(Character ROM) if the rom has any. This last bank is important for

DPCM because DPCM samples can only be placed in CPU memory $C000 -

$FFF9. So you have to find this bank and append it to the NSF for it to pick up the

DPCM samples.

I have alittle trick to use here. What you're going to do is use nes2nsf again and

change the .inf settings. Change bit 0 to 0 because you don't need the header

because you are adding a bank on to the NSF at the end. And change bit 4 to 0

because you want nes2nsf to split the entire rom into banks. Now run the program.

Make sure you change them back to the defaults when you're done so that you don't

forget.

I use a hex editor to join files so you should probably do what I do and use Hex

Workshop. If not you will have to use another hex editor that has that option or a

file split/join utility.

Take a look at what nes2nsf outputted and see that you have 8 files that are

numbered 000-007. Take file 007 because this is the last bank in the ROM, this rom

has no CHR. Load up the Shanghai NSF that you ripped earlier and load up bank

007 and append bank 007 to the end of the NSF. Load the NSF in a player and

presto you have DPCM and it works and sounds good. Sunsoft has real good tunes.

Now you have a couple things left to do. You must edit the header. Fill in the Name

of the game,Composer(if you can't find his/her name or fill in a ? mark). Also you

have to arrange the tunes. Find some free space in the rom. Free space is usually a

real large chunk of 00's or FF's. I have a recommended spot in the NSF to place the

tune arrangement code. That's 3530h Offset in the NSF. You want to figure out

what the CPU address is for that offset. Once again I have a formula. Offset -80

+8000 = CPU address. Place this address in the header in the init address. Now you

do the tune arrangement code. This time it's much simpler and no bootstrap. Place

this code at offset 3530h in the NSF.

The CPU address answer is $B4BO and put that in the header in the init address

section. Remember to flip the address bytes.

$B4B0 AA TAX

$B4B1 BD B7 B3 LDA $B4B7,X ; point to the tune index

$B4B4 4C 04 80 JMP $8004 ; jump to init

.db tune numbers here ; arrange them yourself :)

I shall show you how to optimize this rip soon. This bank joining will be real

usefull one day.

LEVEL 4 Technos Japan Double Dragon 2

The Revenge

You might have noticed before that some companies have the same type of music

driver. Sunsoft,Capcom,and Data East has about the same type of music driver.

You can rip these the same way everytime just about. There is another company

that has the same type of drivers and that's Technos Japan. However this rip will

require you to work harder to make it play. I will explain Double Dragon 2 in this

level and River City Ransom in level 5.

Use nes2nsf to extract the NSF from the game. You will run into 2 banks 005 and

007. 005 is the bank you want, The reason is because it has several writes to $4015.

If you want you can verify it and disassemble each bank and look at them. You will

see a lot of sound code in bank 005 so that's what you go for.

So do what I explained in level 3 and disassemble bank 005 and remove the NSF

header before you do so. Look around the code for alittle bit and get familiar with

it. I shall paste some code here and let you look at what we need to mess with in

order to get this rip to work.

$8000> 4C 2680: JMP $8026 ;

$8003> 4C 9681: JMP $8196 ;

$8006> 00: BRK ;

$8007> 00: BRK ;

$8008> 00: BRK ;

$8009> 00: BRK ;

By using the header defaults and even switching the init and play addresses around

to 8000/8003 will not get this rip to work. This is an important part of the code and

remember it. $8003 is indeed the play address and $8000 is the init address.

However you have to initialize some addresses and run some code to get this rip to

work. Don't worry right now how this was figured out.

So you will edit the code alittle bit starting out. Change this code JMP $8026 to

JMP $8196. And after doing that change the play address in the header to $8000.

You switched the JMP's because you need to make it nice and neat for the

following code.

8000 : 4C 46 81 JMP $8146 ;

8003 : 48 PHA ;

8004 : A9 00 LDA #$00 ;

8006 : 8D FF 07 STA $07FF ;

8009 : 20 20 80 JSR $8020 ;

800C : 68 PLA ;

800D : 8D FF 07 STA $07FF ;

8010 : EE FF 07 INC $07FF ;

8013 : A9 0F LDA #$0F ;

8015 : 8D 15 40 STA $4015 ; Sound Enable

8018 : 4C 20 80 JMP $8020

This is a complex bootstrap code and nicely made as well. You will notice that

address $07FF is initialized and is the address that is used to change the tune. So

type in the code in a hex editor and change the init and play addresses in the header

to 8003/8000 and fire up the NSF and it plays.

Now what you do is arrange the tunes. Find some free space in the NSF and if you

can't, you can tack on the code at the end of the NSF since this one is a 16KB bank.

Remember that the end of the bank in this case is $C000. After you have arranged

the tunes you will do something new and that's count the tunes and convert number

to hex and type in the number in the header at offset 06h. This is the entry in the

header that tells you how many tunes you have. Don't forget to fill in the

name,composer, and company info in the header. Arranging the tunes is more then

just moving sound effects. You can open the game up and order the tunes based on

what order they are played in the game.

This Level here you might have learned a few things. I'm giving you a break so that

you don't have to learn too many things here. You have a lot of catching up to do.

The levels are going to get really hard soon slowly but surely, however you can

handle it. The next level will feature another Technos Japan game and is much like

this one. So company formats are a lot alike since most seem to use the same

development kit in making the games and sound engines. Have fun listening to the

rip.

LEVEL 5 Technos Japan River City

Ransom

We could use nes2nsf and be able to do the rip and use some of the same

techniques that was used in level 4. However I have a new technique to show you

and that's using an emulator debugger with a dump function - Nesten.

Open Nesten and load the rom River City Ransom and while the music is playing

open the debugger. Go to view and activate the debugger there. Set a write

breakpoint for $4000 - $4009. So type in $4000 in the start location and $4009 in

the end location. Next you click memory write. After you do this the debugger

snaps on the code. And then you dump ram. This is a range of the sound registers.

You do this so that you trap the right banks and then you click the Dump $8000 -

$FFFF which is the program rom section.

Also note the stack contents on the left. I write these bytes down. These are

addresses, these are all the routines that you have executed but have not returned to

yet. So everything that was done before is logged so to speak. Write these locations

down and subtract -2 from everyone, also flip the bytes around. D784 = $84D5,

7481 = $8172, 5FFA = $FA5D. These are the CPU addresses that have been

executed in the sound driver. $FA5D is the entry point of the play address and is

more then likely in the NMI code. Also note where the write was executed. At

$07F8 in this case which is in WRAM and not PRG as you might expect.

The dump file was extracted to the saves folder in the Nesten folder. Go to that

folder and copy/paste the dump file to the main directory where all your tools are.

Next you disassemble the file and then load the file in edit from the edit.bat and

then you're ready just about. Also load the file in a hex editor. Also load another

NSF in the hex editor so that you can get the header from it and transfer it to the

dump. This is simple. I highlight 0h - 7Fh in the hex editor and copy it. Then I go

to the dump file and paste the header at the beginning of the file. So you are ready

to view the disassembly and to edit the NSF at the same time.

Before going farther I want to talk about interrupts for a moment. In the NES you

have 3 interrupts and these are located in a vectored table at $FFFA - $FFFF in

every NES rom. These are what you could call pointers and do indeed point to the

code address locations for the interrupt function. They are as follows.

 NMI $FFFA - $FFFB - Non-Maskable Interrupt. Updates screen on vblank.

Also updates sound hardware most of the time.

 Reset $FFFC - $FFFD - Triggered when machine is powered on. Sometimes

has sound code here.

 BRK/IRQ $FFFE - $FFFF - Very rarely used. Can have sound code as well.

As it says in the NES Music Ripping Guide by Chris Covell, that the entry to the

play code is usually in the NMI code and this is almost true everytime. Sometimes

you will not find the play code here. This is why it is a good idea to write down the

contents of the stack to notepad or something.

First of all look at the disassembly of River City Ransom and look to see where the

music driver code is. The code is in the $8000 region of the PRG. Next you want to

look in the NMI code but first you have to look in the bank to get the location of

the NMI. Remember the NMI vectored location is $FFFA - $FFFB. Use this

formula to find the NMI pointer in the NSF. FFFA - 8000 + 80 = NSF Offset. The

answer is 807Ah Offset. So you look at these 2 bytes there at that location and flip

them around. This is your NMI location and you should look in the disassembly at

that location which is $FF4F in this case.

Look at $FF4F in the disassembly. This code is rather tricky, however I'm not

going to explain it much. I will show where the code leads to.

$FF4F> 2C 0001: BIT $0100 ; test bits, A & M,N=M7,V=M6

$FF52> 10 08: BPL $FF5C ; will not branch

$FF54> 50 03: BVC $FF59 ; will branch if updating audio hardware

$FF56> 4C 68F1: JMP $F168 ; jump to the main NMI code.

$FF59> 4C 2BF1: JMP $F12B ; go to call to play routine. updates audio

hardware.

$F15A> 20 54FA: JSR $FA54 ; leads you here.

$FA5D> 20 0380: JSR $8003 ; leads you here. This is the entry to the play address

here. This address is in the stack contents when you copied it down earlier. $8003

is the play address. Put this address in the header. This is how you find the play

address from a disassembly and emulator debugger. Tracing the NMI code can be a

real pain sometimes so do it more then once if you have to because the code can

lead you in tons of different address directions.

Now that you know what the address is for the play code you can get to work on

the init code. We are going to do the same thing we did in level 4. Switch the JMP's

and write some code. Here is the code in the NSF bank before you change it.

$8000> 4C 2080: JMP $8020 ;

$8003> 4C 4681: JMP $8146 ;

$8006> 4C 00B8: JMP $B800 ;

$8009> 4C 33B8: JMP $B833 ;

$800C> 4C AFBA: JMP $BAAF ;

$800F> 4C 8DB8: JMP $B88D ;

$8012> 4C D2B8: JMP $B8D2 ;

$8015> 00: BRK ;

Change the above code with the following below.

8000 : 4C 46 81 JMP $8146 ;

8003 : 48 PHA ;

8004 : A9 00 LDA #$00 ;

8006 : 8D FF 07 STA $07FF ;

8009 : 20 20 80 JSR $8020 ;

800C : 68 PLA ;

800D : 8D FF 07 STA $07FF ;

8010 : EE FF 07 INC $07FF ;

8013 : A9 0F LDA #$0F ;

8015 : 8D 15 40 STA $4015 ; Sound Enable

8018 : 4C 20 80 JMP $8020

So now the NSF plays and sounds real good. Technos Japan has a cool sounding

driver. A lot of the games sound the same and could possibly be ripped in the same

way. I've seen several of them that I could have ripped easily. Now arrange the

tunes. You will notice that the first tune is silence. I have a trick for skipping those

silence tunes if there is no silence tunes anywhere in the rip. The silence tunes have

to be in order at the front of the NSF in order for this code to work.

TAY

INY

TYA

JMP $init ; this is for skipping 1 silence tune

CLC

ADC #$nn ; nn is number of tunes you want to skip

JMP $init

One last thing you can do. You can optimize this rip by removing a section of the

NSF. Remove $C000 - $FFFF, that's 4080h - 8080h Offset in the NSF. So that

leaves a 16KB rip after you remove the excess data because you don't need it. You

can arrange the tunes at the end or somewhere where there is free space.

So this wraps this level up quite nicely. Don't forget to fill out the other header

information.

LEVEL 6 Hudson Hector 87

Use nes2nsf to extract the bank from hector 87 and the bank extracted will be 005.

Go ahead and try to play the rip and you notice that it will not play. A NSF at these

harder levels will never play with the NSF address calls set at 8003/8000 for init

and play respectively. So your first task is to find the play address that I showed

you in level 5. Before you do this remove the header and disassemble the game.

This time you don't have to use Nesten to debug because you have already

extracted the right bank. Use FCEUD and bring up the debugger while the music is

playing. Set a write break point for $4000 - $4009 and wait for the snap. Write the

stack contents down. Remember you have to flip the bytes and subtract 2. Next you

will want to find the NMI interrupt routine. With FCEUD it's easy. First disable the

sound write break points and then type in NMI and check the execute box and click

run and let it snap. The debugger snaps on $DB5E at the start of the NMI. Now if

you was paying attention you will have noted where the music code is and the

music driver is located in the $8xxx area of PRG. You want to look for a JSR or

JMP that goes to this area. So first look at Address $DB8E, this was one of the

addresses in the contents of the stack. Check the code there. $DB8E - JMP $8009.

So $8009 is the play address. Place this address in the header in the play area.

The play address call is usually the easiest to find. The init address call is another

story. The init initializes memory addresses,sets up data blocks,changes the tune.

However you can sometimes find the init address by setting a write break point to

4015 in an emulator debugger before the music starts. So you write down the stacks

contents like you did for the play and look at your disassembly and try out the

addresses in the header and see if they work. Usually this doesn't work. What you

might find most of the time is a sub routine that is a bootstrap code that initializes

the sound registers and that's about it, this will not make the tunes play unless you

add it to the init routine that you found. There is a few different types of init

routines and the one we are going to focus on is the type that uses a memory

address to switch the tunes. First I need to explain memory addresses to you.

Memory addresses are used to store numbers and use them again and save them for

later whenever the code needs them. So usually the accumulator contents is

transferred to these addresses and the accumulator loads from these addresses as

well. The data in addresses is also manipulated in other ways as well by the code.

I'm going to show you the memory map of the WRAM(Work RAM) page by page.

 Zero Page - $0 - $FF

 Page 1 - $0100 - $01FF ; used for the stack mostly

 Page 2 - $0200 - $02FF

 Page 3 - $0300 - $03FF

 Page 4 - $0400 - $04FF

 Page 5 - $0500 - $05FF

 Page 6 - $0600 - $06FF

 Page 7 - $0700 - $07FF

So the range of WRAM is $0 - $07FF. The entire game uses these addresses and

you have to figure out which is used to switch the tunes. I have a couple of tricks to

use to discover this address. Using a memory viewer helps with this and FCEU(not

the D version) and VirtuaNES has a memory viewer. Nesten and FCEUD has a

cheat console. And you can view the disassembly to help you.

First check this disassembly around the play address. $8009 leads to $8585. So you

want to check this area in the code $8585 - $86AA. Write down all the Zero Page

addresses that are used in the code. Yes, commonly $0 - $FF is used to switch the

tunes, however this isn't always so, be on the lookout. Write down these addresses.

 $FA ; used several times

 $FB

 $F2,X ; $F2 + contents of the X register

So you narrowed down the list some. Run the game and open the memory viewer.

Note the contents of the first address $FA. So the title screen is playing, now go

start the game and get on a level or something and see if the tunes changes. Usually

this number is going to be low, right in the range of 00 - 30 in hex about. This looks

like it's the right address. The next thing you have to do is find the right code and

this isn't as hard as you think. Open FCEUD and set a read or write breakpoint to

$FA, try them both individually and note the code addresses it snaps on and write

them down. This does take some time however to deduce the right init address even

with the right memory address.

Eventually you will see the following code and this is the right address.

$85F2> A5 FA: LDA $FA ; load tune to A, could be stuck on 0

$85F4> 09 80: ORA #$80 ; OR A

$85F6> 85 FA: STA $FA ; store results to tune address

$85F8> 0A: ASL A ;

$85F9> 0A: ASL A ;

$85FA> 0A: ASL A ;

$85FB> A8: TAY ;

$85FC> A2 07: LDX #$07 ;

$85FE> B9 D1A2: LDA $A2D1,Y ;

$8601> 95 F2: STA $F2,X ;

$8603> 8D 7901: STA $0179 ;

$8606> 88: DEY ;

$8607> CA: DEX ;

$8608> 10 F4: BPL $85FE

Use 85F2 for the init address and you find out it still doesn't play. Well, you have to

initialize this address first. The simple solution is to build a tune arrangement code

and store to $FA and then jump to $85F2. Do it like this.

$C000 AA TAX

$C001 BD 00C0 LDA $C009,X ; point to tune index

$C004 85 FA STA $FA ; store to tune address

$C006 4C F285 JMP $85F2 ; go to init

.db tune index

Place the code wherever you want but you have to point the LDA $xxxx,X right on

the tune index. Count the bytes from the start of the code that you wrote and add

that number to the address of the start of the code. Look and see the above code to

see how I did it.

So you learned one way of how to find the entry point to the init code and learned

about memory addresses. And now that you did all that work you should listen to

the tune for a few moments.

LEVEL 7 Nintendo Wrecking Crew

You can use 2 methods in ripping this game if you want. nes2nsf or using Nesten to

dump the 32KB bank. If you use nes2nsf to rip the bank then you have to remove

the header in order to disassemble, and you have to change the origin to $C000 in

the asm.bat file.

Next you want to find the entry to the play address. This is the easy part of the rip

and you should find it quick. I found the entry to the play by using the stack. Here

is the code to the play routine.

$F2E6> A9 C0: LDA #$c0 ;

$F2E8> 8D 1740: STA $4017 ; [NES] Joypad & I/O port for port #2

$F2EB> A5 F0: LDA $F0 ;

$F2ED> 4A: LSR A ;

$F2EE> B0 F3: BCS $F2E3 ;

$F2F0> A5 F1: LDA $F1 ;

$F2F2> 4A: LSR A ;

$F2F3> B0 CA: BCS $F2BF ;

$F2F5> AD FD07: LDA $07FD ;

$F2F8> D0 18: BNE $F312 ;

$F2FA> 20 DCF3: JSR $F3DC ;

$F2FD> 20 00F6: JSR $F600 ;

$F300> 20 21F7: JSR $F721 ;

$F303> 20 7EF8: JSR $F87E ;

$F306> 20 3EF2: JSR $F23E ;

$F309> A9 00: LDA #$00 ;

$F30B> 85 F0: STA $F0 ;

$F30D> 85 F1: STA $F1 ;

$F30F> 85 F2: STA $F2 ;

$F311> 60: RTS ;

This is the entire play code nice and neat. You see it starts out with the

following code.

$F2E6> A9 C0: LDA #$c0 ;

$F2E8> 8D 1740: STA $4017

This is what most old Nintendo games do, except that most of the others also write

to $4015. You can sometimes find the play code and not debug for it at all.

The real problem with this game is that the driver doesn't have an init code and you

have to design one. So here is how it works. You go to a level and it loads a tune

number into a certain address, once the play address is called then the code checks

the address to see if the number has changed and if it has then the play address

updates the hardware and the tune.

So you want to figure out how to design an init routine. This is not one of the more

easy things to do. First of all you need to find out what memory addresses are used

for the tune. You won't find these using a memory editor because the addresses are

updated all the time like crazy, everytime the NMI is triggered. So look at the

bottom of the play routine and notice this code here.

$F309> A9 00: LDA #$00 ;

$F30B> 85 F0: STA $F0 ;

$F30D> 85 F1: STA $F1 ;

$F30F> 85 F2: STA $F2 ;

$F311> 60: RTS

These are your memory addresses you are looking for. Yes, all the old Nintendo

games are the same way and you can find these addresses right at the end of the

play code. Simple as that. What you do is make a tune arrangement code routine

and start with one address at a time and find out what the tunes are. You will find

out that one of them is for looping tunes, the next is for non looping tunes and the

last is for sound effects. Write down the number for each for tune and convert to

hex. You should make the following code to figure out what the tune numbers are

and change the memory address write to the next one when done.

85 F1: STA $F0

60: RTS

So you find out F0 is for sound effects, F1 is for most non looping tunes and a

couple looping and some sound effects. F2 is all sound effects and these are better

then F0.

What you do next is look for some code in the game before making an init routine.

Using read and write break points in a emulator debugger you eventually end up

with this code. Ignore any reads and writes in the game play code. Only within the

sound driver range.

$F87E> AD DB07: LDA $07DB ;

$F881> 4A: LSR A ;

$F882> B0 30: BCS $F8B4 ;

$F884> 4A: LSR A ;

$F885> B0 22: BCS $F8A9 ;

$F887> A5 F1: LDA $F1 ;

$F889> 4A: LSR A ;

$F88A> 4A: LSR A ;

$F88B> B0 EA: BCS $F877 ;

$F88D> 4A: LSR A ;

$F88E> B0 12: BCS $F8A2 ;

$F890> 4A: LSR A ;

$F891> B0 5A: BCS $F8ED ;

$F893> 4A: LSR A ;

$F894> B0 3C: BCS $F8D2 ;

$F896> 4A: LSR A ;

$F897> B0 27: BCS $F8C0 ;

$F899> AD F307: LDA $07F3 ;

$F89C> D0 01: BNE $F89F ;

$F89E> 60: RTS ;

This is part of the play code and is rather complicated. This determines when the

tune address is changed for F1. Also you note the address $07DB which you must

also use in your init code because you must initialize this address to work with this

code here.

Now is the time to design some code for the tunes and all the addresses must be in

the same code routine. If you use one address to play a tune you must silence the

others. You do this by arranging the data. So here is the code you can use that

works for multiple memory addresses.

ASL

ASL

TAX

LDA $FFA0,X

STA $F0

LDA $FFA1,X

STA $F1

LDA $FFA2,X

STA $F2

LDA $FFA3,X

STA $07DB

RTS

.db see rip for data ordering

This code is set up like the actual rip with the addresses pointing to the tune index.

Remember that when you have a setup like this you would for example load a byte

into $F0 and silence the rest out to play a tune. Then you would play the next tune

and it would silence $F0 and load a tune byte into $F1 and so on. In order to use

the code this way you would have to arrange the data and this takes some practice

to get it right. For instance 00,08,00,00,00 this silences F0,and F2 and loads F1

with a tune. This is also based on what the contents of the X register is as well.

Look at the actual rip and check out the code and data ordering and play with them

some. The rip out there is not ordered right anyway, you could fix that up if you

wanted to.

This is the end of the level and you learned how to deal with a complex situation

where you use more then one address for the tunes. Also that this is the way older

Nintendo games store their music driver. You could do many Nintendo games this

way.

TEST:

Rip Urban Champion. This rip will require a bootstrap code along with using 3

memory addresses, you must silence one of them. I will only tell you this. The

tunes are 10,20,08,04,02,40,80 and the sound effects you have to find. This test

requires methods from a couple of different levels so have fun. You must use this

level's method in order to get the sound effects with the tunes. Some sound effects

are in the tune address. This NSF hasn't been ripped yet.

LEVEL 8 Chunsoft Tetris 2 + Bombliss

Wow the music in the game is super cool and that's because the music was

composed by Koichi Sugiyama, the same guy that made Dragon Warrior/Dragon

Quest music. This game is mapper 1 and so it's like mapper 2 in a lot of ways that

we already worked with. $8000 - $BFFF is where the 16K banks are switched in

and out. $C000 - $FFFF is the hardwired section of the game. The upper 16K

which is the hardwired bank is what you could call the framework of the rom and

calls the banks for different levels,music driver,takes care of the interrupts and

anything else. As you read here in this doc and The NES Music Ripping Guide that

the entry point to the play will be found in the NMI and so this is right and is found

in the hardwired bank and so is the entry point to the init but you can't find it

because it's using an indirect routine which is a real pain to find even if you're

experienced. You can use nes2nsf and get the right bank which is 005 in the rom.

However your best bet is to use an emulator and dump $8000 - $FFFF because you

need to disassemble the entire space to find the entry to the init code.

Indirect jump code is difficult to find like I say. However you need to understand it

first to be able to find it. JMP ($xxxx) is Jump Indirect. You don't jump to the

address in the parentheses you read the bytes at that address and you flip the bytes

around for your address to jump to. Usually these bytes are in PRG somewhere,

you have to initialize these addresses before you can make the indirect jump so you

load 2 data pointers into the address stated in the indirect jump and then you run the

operation. A lot of games use this method. This game uses a slightly different

method and is the same in principle.

You have a code routine that is used many times for many different things. What

you do is allocate code in zero page area of memory and you JSR to the WRAM

area and then JMP to another routine. It's different in that you don't use a JMP

indirect operation. I will paste the following code for you and you can check it out.

This is the indirect routine.

$CEAF:85 20 STA $20 = #$B8

$CEB1:86 21 STX $21 = #$01

$CEB3:AD 04 03 LDA $0304 = #$05

$CEB6:48 PHA

$CEB7:08 PHP

$CEB8:AD 04 03 LDA $0304 = #$05

$CEBB:8D 15 03 STA $0315 = #$04

$CEBE:20 DE CE JSR $CEDE ; go to initializaton

$CEC1:A9 4C LDA #$4C ; initialize JMP op

$CEC3:85 23 STA $23 = #$4C ; " " "

$CEC5:A6 21 LDX $21 = #$01

$CEC7:A5 20 LDA $20 = #$B8

$CEC9:28 PLP

$CECA:20 23 00 JSR $0023 ; indirect

$0023:4C 42 89 JMP $8942 ; init code

This code might be confusing at first until you understand it. Addresses

$23,$24,$25 are initialized somewhere, $23 is initialized in this routine. You

JSR(Jump Save Return) to address $0023 and execute the code that was initialized

there in WRAM. In this case the code leads you right to the init routine.

You might want to know how I found it. It was all guess work for the most part. I

always check all the interrupts. In this case I checked the BRK/IRQ interrupt and

did an address break for $CF2C. I checked zero page for code and sure enough I

ran into some code in this area. I kept debugging this code at different times to see

if I would run into the init code and sure enough I did.

You know the drill, as always arrange your tunes. Count your tunes and fill in the

composer and company names in the header. After all this have fun listening to the

rip. The addresses should be 8000/8942/8000 load/init/play respectively.

LEVEL 9 Cony World Heroes 2

World Heroes 2 is a pirate game and uses a method that requires you to build an

init routine for the NSF. You can chose 2 methods to build the routine. However

I've chosen an indirect jump routine to make things really simple. Go ahead and

dump ram and then disassemble the bank. Also debug the code for the play address.

The play address is $80F5 and right above this code is $80CB. This is a bootstrap

code and is part of the init. You can try it in the header and it won't play. You will

notice that this bootstrap will be called everytime a tune plays so you will have to

search for it. You can do it the long way or the short way. The long way is playing

the entire game and debug the code, however you might not get all the tunes this

way. I have a method that's quick and easy. Load the disassembly in notepad or

whatever text program you use with a search function and search for $80CB. You

will find many matches in the $Cxxx area of PRG and you will writes these down

as you go. This first match you get is at $C14D, however you want to load the X

and Y registers as well so you write down $C149 as your first address.

$C149> A2 DB: LDX #$db ;

$C14B> A0 8C: LDY #$8c ;

$C14D> 20 CB80: JSR $80CB ;

$C150> 60: RTS

$C241> A2 94: LDX #$94 ;

$C243> A0 87: LDY #$87 ;

$C245> 20 CB80: JSR $80CB ;

$C248> 60: RTS

$C4F7> A2 C3: LDX #$c3 ;

$C4F9> A0 8D: LDY #$8d ;

$C4FB> 20 CB80: JSR $80CB ;

$C4FE> 60: RTS

These are just 3 matches you get when you search in the disassembly and you have

a lot more to find so go ahead and look for them. Once you're done doing this then

you have to make an init routine. This is going to be your indirect routine.

C000 0A ASL A

C001 AA TAX

C002 BD 10C0 LDA C010,X

C005 85 STA 00

C007 E8 INX

C008 BD 10C0 LDA C010,X

C00B 85 STA 01

C00D 6C 0000 JMP (0000)

.db 49,C1,41,C2,F7,C4,ETC

You have to figure out 2 memory address that you are going to use for the JMP

indirect and the ones that I used are $00 and $01. I used a memory viewer to make

sure the addresses was not used by the sound driver. It's ok if you use addresses

used by anything else as they won't be used in the NSF. Remember those addresses

you wrote down. Well, these are going to be your data that is pointed to by the

above code. You flip the address bytes and you add them at the end of the code just

like you would for arranging the tunes except that you have 2 bytes instead of one.

If you understand level 8 then this should hit you like a tun of bricks.

LEVEL 10 Human Creative Egypt

Egypt is a puzzel game that gets rather hard at the end where it kicks you totally.

This game also has Egypt sounding music and is rather cool sounding. This NSF is

rather hard to rip, took me quite awhile to figure it out and the solution wasn't as

hard as I thought. When you rip the NSF and find the right init and play addresses

it crashes in some players and won't work in others. When you load the game up in

a emulator and set a write for $4000 - $4009 and you end up seeing the writes to

the sound registers in the WRAM area. The first thing you should check is if these

memory addresses are being initialized in the init code and at the right time. So I

shall show you the code here that is in the rom.

$01D8:8D 00 40 STA $4000 = #$FF

$01DB:60 RTS

This code is used over and over again and the sound register address is changed a

lot. 8D 00 40 the 00 byte is changed all the time and is updated in the play code

thousands of times. You probally know by now that the init code initializes

memory addresses and you need to trace the init code once you find it. I would

check the sound registers first when you have them in the WRAM area and then go

from there. In this case the sound registers are not being initialized and so you have

to do them manually. So you need to make a loop to initialize these addresses. A

countdown decrement loop might be best in this case. You should use the Y

register and not the X register because the X register is used most often. Also you

need to check the code to see that this routine doesnt mess anything else up by

using the Y register. So here is the code to use and some data to go along with it.

FF70 48 PHA

FF71 A0 04 LDY #04

FF73 B9 8CAD LDA AD8C,Y

FF76 99 D701 STA 01D7,Y

FF79 88 DEY

FF7A D0 F7 BNE $FF73

FF7C 68 PLA

FF7D 4C 6FB7 JMP B76F

.db 60,40,00,8D

You can place the code wherever you want. However this is where I placed the

code. And so this initializes the addresses and you can do this with other games as

well that has register writes in WRAM. You can also initialize any other code that

ends up here in WRAM in the same way. This is a simple level and so ends

here.

LEVEL 11 Carry Lab Mystery Quest

This game is a pain to rip if you don't know how. You can use nes2nsf and you will

get a 16K bank output but you won't know where the play address is and you won't

be able to find the code with sound register writes. So you need to use a emulator

and you make a breakpoint write to 4000 - 4009 and you never get a snap. This is

because the sound registers are written to indirectly. Any emulator with a debugger

will ignore indirect writes to any register because it could mess up emulation. So

you gotta figure out where the play address is. So what you can do is either keep

tracing the NMI code which could take hours sometimes or you can use

Nintendulator with the trace log option in the debugger. So go ahead and use

Nintendulator and while the music is playing log a trace for a moment or 2, don't

trace for too long or you will get a gigantic log that's too big to open. Open this log

and use the search function and search for 4000 or any of the other sound registers.

If you get a match then you see more writes in the same place then you found part

of the play address. If you don't find a match then you need to do the log over

again. Write this down and then close everything. Now open FCEUD or Nesten and

set a address breakpoint for the address where the sound register is being written to.

Once you get a snap then you can dump the bank and look at the stack to get an

idea where the play entry is and now you should be able to find where in the NMI

code the entry to the play code begins. Now here is some part of the play code.

$F775:A9 00 LDA #$00

$F777:A0 02 LDY #$02

$F779:91 09 STA ($09),Y @ $400A = #$FF

$F77B:C8 INY

$F77C:91 09 STA ($09),Y @ $400A = #$FF

$F77E:E6 04 INC $04 = #$19

As you can see the sound registers are being written to indirectly and isn't much of

a problem to find once you know how. There is lots of games out there like this.

Init and play is F5D1/F664 respectively. I will explain optimizing in the next level

and you could try to optimize it for practice.

LEVEL 12 Optimizing

Optimizing is a must if you want a good clean rip and a small file size that contains

the music driver and no game data. After you have made the rip and make sure

every sound channel works and the header updated with name of game, composer,

and company name you are ready to optimize.

If you use NES2NSF then you have partially optimized the rip because you have a

16KB file section and usually this contains all the data you need. Still you may

need to trim the file more. Take the game 1943 in Level 1 and you can optimize

this game. Look at the end of the NSF and trim off all the extra FF bytes in a hex

editor. This only trims the file alittle bit. If you used this space for your tune

arrangement code then don't trim this space.

Next thing you can do is disassemble the code if you haven't already. You notice

the start of the music code is at $8000. You can look through the disassembly till

you run into some code that is not part of the music driver. You will run into some

code at $A902 so then you eliminate everything after. So how do I figure out how

to find that address in the NSF. Simple, all you do is use this formula, address

+80(header) - 8000 = NSF Offset. Eliminate everything after 2982h. If you

arranged the tunes then you need to rewrite the code at the end of the music driver.

Now load the NSF and you find out it plays. The NSF is nice and trim now that it's

optimized.

Now you need to learn how to optimize a rip from an emulator dump if the music

driver is past $8000. Let's use Wrecking Crew for an example. The play is at $F2E6

and the init is wherever you place some code. This time it's highly recommended

that you place the code at $FF80 and eliminate the rest of the data after this code.

The rest of the data should be all FF's. FF's or 00's are usually padded data at an

end of a rom to make a bank add up to the size it's supposed to be. However you

can get rid of this data. Now move on to the next step.

Now look at your disassembly and next you want to figure out where to eliminate

the data before the sound driver. First you gotta figure out the start of the sound

driver. Look at the play code and track every JSR or JMP that goes before the

address $F2E6 and next you want to check any LDA $xxxx,X or Y that reads in the

sound driver area. After checking all this you finally figure out that the start of the

sound driver is about $F100 and so you eliminate everything before this address.

So how do you find this address again in the NSF. This time you do it alittle

differently. Take the header off first and then do this formula. address - 8000 =

offset. The offset would be 7100h in the headerless NSF you have. Now eliminate

everything before that. Do not remove the byte at 7100h. Now put the header back

on the NSF and restore the init and play addresses. Next you will change the load

address, yes that address that you have been wondering what to use for. Well, the

load address is the start of the program and you're changing the start of the program

to $F100 so that's your load address in the header. Remember to flip the bytes

before entering into the header.

If you have any code that is writing to any other registers like $2006/$2007 for

instance there is a slight possibility that the game is picking up data in the

CHR(Character ROM) for the music driver but this doesn't happen very often. So

you can zero out any data that is not sound code. Track the routine in the sound

driver area and debug in an emulator if you have to so that you can track down the

data as well and other routines in the sound driver. Make sure that you also zero out

any bankswitching code. If the music driver uses this bankswitching code and the

rip is not a bankswitching rip then you can either make it return via a RTS or NOP

out the code. Any writes to anything other then ram or expansion rom or saveram

or mirrored areas is illegal and must be changed. You can only write to sound

registers, expansion sound chip registers, and NSF bankswitching registers, and

RAM areas.

This is the end of basic optimization of a NSF. Next you have Paging Optimization

and this is alittle more difficult but you can manage.

Paging Optimization

Paging optimization is a method to optimize 2 banks and shuffle one at the end and

one at the beginning of the NSF. This makes for a much smaller NSF rip then most

simple optimizations like stated above. You don't have to design any code for this

as long as the code is linking the banks. All you do is switch the banks around and

adjust the load address and the bankswitching bytes in the header and you're done.

This is a prelude to bankswitching and in the long run will help you understand

bankswitching.

You need to learn about the banks in a NSF first. NSF's have 4KB banks and there

is 8 of them in the $8000 - $FFFF NES address space. Each bankswitching byte in

the header at 70h - 77h controls a 4KB bank and tells the player what bank to load

at what address location. Look to the following table.

 70h - $8000 - $8FFF

 71h - $9000 - $9FFF

 72h - $A000 - $AFFF

 73h - $B000 - $BFFF

 74h - $C000 - $CFFF

 75h - $D000 - $DFFF

 76h - $E000 - $EFFF

 77h - $F000 - $FFFF

next you can adjust the load address and you do this according to the spec, load

address AND 0FFFh. This is to determine where on the fist bank to load the data.

Now we can get down and dirty with an example. Remember Level 3, we will use

the game and it's Shanghai 2 for the example NSF to optimize. This first thing you

want to do is get the rip that is 32KB in size and eliminate the banks that are not

used in the game. We do this by figuring out what banks are used by debugging the

code. You open the disassembly and look at all the code in the music driver and

note the locations. All of the code is in bank 0 or $8000 - $8FFF area. Next you

want to debug the code to find out where the data is. Start with the data that is not

DPCM. You have the following code.

Find a particular address with an indirect read operation and debug for the code

location like so. This would be for the first tune.

$8757:B1 81 LDA ($81),Y @ $933B = #$50

$8759:C8 INY

$875A:9D E2 06 STA $06E2,X @ $06E2 = #$00

$875D:98 TYA

Indirect Indexed operations are useful for transferring and loading large blocks of

data and in this case is loading part of the sound driver data for the first tune. As

you can see that some of the data is being loaded at $933B which is in page 1 of the

NSF, $9000 - $9FFF. Next you can debug for some of the other tunes. In this case

you can also check the init code.

$80AD:0A ASL

$80AE:AA TAX

$80AF:BD 9D 88 LDA $889D,X @ $889D = #$66

$80B2:85 81 STA $81 = #$00

$80B4:BD 9E 88 LDA $889E,X @ $889E = #$90

$80B7:85 82 STA $82 = #$00

$80B9:A0 00 LDY #$00

$80BB:B1 81 LDA ($81),Y @ $0000 = #$00

$80BD:30 E6 BMI $80A5

This code here loads data in page 1 and for the other tunes the data goes deeper into

ROM. For tune 5 you load data at $AAA8 and is in page 2. Eventually you will run

into data that uses page 3 as well. So now you know that banks 00-03 are used.

Next you need to locate the DPCM data.

Finding the DPCM data is not hard in this game and as a matter of fact you can

look at the NES Audio Ripping Doc to help you with that. Except that you don't

have to move the samples, all you want to do is locate the bank the samples are in.

Also look at the APU reference to get the registers for the DPCM and read up on

them as well. Now locate the code.

$8774:0A ASL

$8775:A8 TAY

$8776:B9 3D B4 LDA $B43D,Y @ $B43F = #$A0

$8779:8D 10 40 STA $4010 = #$FF

$877C:C8 INY

$877D:B9 3D B4 LDA $B43D,Y @ $B43F = #$A0

$8780:8D 11 40 STA $4011 = #$FF

$8783:C8 INY

$8784:B9 3D B4 LDA $B43D,Y @ $B43F = #$A0

$8787:8D 12 40 STA $4012 = #$FF

$878A:C8 INY

$878B:B9 3D B4 LDA $B43D,Y @ $B43F = #$A0

$878E:8D 13 40 STA $4013 = #$FF

This is the DPCM register write code and what you're looking for is the write to

$4012 which will tell you where the samples are located at. $4012 is loaded with

the byte A0. So you do the following formula. Contents of $4012 * 40 + $C000. So

you do this A0 * 40 + $C000 = $E800. This is tune 1 and you can do it for the

others as well. $E800 is located in page 06 and you will find out page 07 is used as

well. So you use pages 00 - 03 and 06 - 07. Next you piece them together.

Each 4KB bank is 1000h in size and so banks 00 - 03 is in the range of 0h - 3FFFh.

Banks 06 and 07 are 6000h - 6FFFh and 7000h - 7FFFh respectively. So divide the

file in half and take the upper 4000h and divide that in half and take the upper

2000h and append that to the bottom 16KB at the end of the file. So now you have

banks 00 - 03 and 06 - 07 in one file and you eliminated banks 04 and 05 from the

NSF. Now you have one step to go. You have to set the bankswitching bytes in the

header. Yes it's nice that you can use the bankswitching bytes for something other

then bankswitching and paging optimizations is it. Since you relocated the banks,

pages 06 and 07 become 04 and 05 in the NSF. You use the bankswitching bytes in

the header to determine what pages are loaded into what 4KB address space. 00 -

03 is $8000 - $BFFF and 06 - 07 is $E000 - $FFFF. So you fill in the bytes at 70h -

77h in the header. 00,01,02,03,00,00,04,05 . You may notice that $C000 - $DFFF

is not used, that's because we eliminated the banks that didn't have music data. You

leave the load address the same for now because we have not changed the start of

the program just yet. Next we are going to figure out the best banks to trim.

LEVEL 13 Free Lance Ripping

So far you've learned how to rip various NSF's based on company and many other

basic methods that you can take with you no matter what NSF that you attempt to

rip. You will not always be successful at ripping an NSF and maybe you can rip the

NSF and it has emulation issues such as working in one emulator or player and not

in another. Or maybe it sounds decent on one player and not the other, etc. It will

be your job to try and make sure that a NSF is compatible with all players and

emulators. Chances are that if your NSF plays in all NSF players and emulators, the

rip will have a better chance of playing on the real hardware. Yes, there is a NSF

hardware player designed by Kevin Horton, that's usable with CopyNES.

So now it comes to the point where you would like to rip NSF's from many

different games. You can attempt to rip any NSF at will, given some determination

and effort is given. Keep in mind the many different company formats, most of the

time you can rip an NSF instantly when you run into such a game. Capcom, Data

East, Tecmo, Nintendo, Sunsoft, etc - these are the companies that use the same

music driver format for nearly all of their games. There are exceptions and don't

expect a game to use the same format. Debug and have fun with it.

Now it's time to mention the basics again, I will cover a few of them below.

Load address is the origin, start of the program code, beginnings of the NSF. The

load address is commonly and most likely at $8000, which is the starting address of

active ROM in memory for the NES gaming system. If you have trimmed data

from the beginning of the bank, the load address must be adjusted in the NSF

header. Also, according to the NSF spec in bank switching which is the second step

in initializing the tunes which would use load address AND 0FFF.

Play address. Usually this is quite simple, the entry point is almost always found

in the NMI interrupt routine, using an emulator like FCEUXDSP can help by

setting break points to sound registers and in tracing the NMI code itself. When the

entry point is not found in the NMI interrupt, you can trace back in the code from

the sound register break point. Using the stack viewer in FCEUXDSP can help

trace back in the code.

Init address. The elusive init address call is the life and death of a successful NSF

rip in most cases. If you cannot find or design a proper init address call, the NSF

will not play or work properly. An init routine is code that initializes RAM

addresses, sets up the data blocks and calls the tune based on the number of the

tune, commonly from an index or LUT (Look Up Table). A game can also have

more than one init address, I've seen this in games and in some that use expansion

sound like FDS rips for example.

Also a game can have what is called a bootstrap routine. This "bootstrap" code is

usually accessed from the Reset interrupt or just before the main init called is called

somewhere in the game code. There are also games that do not have an init routine

to speak of. These type of games sometimes require more effort in discovering

what addresses change the tune and you may have to initialize other addresses to

make sure the NSF will play. Other than the RAM address that changes the tune,

I've seen some addresses that needed to be initialized with 00 or even FF before the

NSF would play.

You also have games that initialize the index registers, X or Y and then intializing

some addresses that don't appear to be related to the sound driver somewhere deep

in the game code. However, if you're familiar with the sound driver, you can

possibly track these routines down from looking at a disassembly and viewing

debugger code from FCEUXDSP. You can set up a table and load theses values

using custom made code. You can also use a Indirect Jump routine to jump to these

addresses in the same bank, again using custom code.

Those three address calls are most important to the NSF, so I mention them again

in recap and some explanation even a couple years later after the first writing of

this document as I've gained a better understanding of NSF ripping. I continue to

learn more and rip NSF's that can be very difficult or as easy as many stated in this

document. Now we can go over a brief analysis of the levels to understand what we

have learned.

Level 0 - Gather tools, documents, emulators, NSF players, etc. I would also like to

add to the list the following tools - FCEU MOD, Unofficial Nintendulator, FDS

Explorer, NSF Optimizer, FCEUXDSP (NSF version updated by UGETAB) You

can rip NSFs the old school way by using a hex editor, Nesticle and a disassembler

(the way I used to do it). However, with the new tools available will help you to

make better and more accurate rips, as well as the process being speeded up greatly.

Level 1 - This level shows you NES bank sizes and how to rip a NSF from a rom

using NES2NSF, or using a hex editor to extract certain banks that contain the

music driver. Then you prepend an NSF header to the bank and assign the Load,

Init and Play address respectively to produce a playing NSF file. Also shows you to

count the tunes and adjust in the NSF header.

Level 2 - This level shows you how to design a bootstrap code that inits a tune as

well as games that apparently only have sound effects (there are other reasons too).

Also shows you how to arrange tunes and sound effects. Be aware that many

companies use the same driver format, like Data East for example. Filling out the

header, with the name of game, artist/composer, company, etc.

Level 3 - This level discusses setting up a folder for your NSF ripping, as well as

setting up DCC6502 to use in dissassembling the banks that you have selected to

examine. A brief analysis of the sound registers which was taken from the APU

Reference doc, nearly verbatim. This level shows you how to place your own

custom init code in a certain place in the NSF. Also shows you bank joining, and in

this case makes sure that the DPCM is present in the rip.

Level 4 - A little more of Level 3 ripping with a bit more hex editing and code that

is more complex. Technos is the theme in this level, as that's the type of driver

you're dealing with there.

Level 5 - This level once again deals with a Technos driver. You'll learn how to use

a debugger and dump the contents of active memory that can isolate most if not all

of the sound driver. Again in this level you'll be using some previous level

techniques to rip NSF's.

Level 6 - This level teaches a few more debugging techniques using FCEUD, to

deduce the play address more effectively. Discussion of memory addresses and

how to design a basic init routine where only one address need be initialized for the

tune switch, and how to deduce the location of the main init routine.

Level 7 - How to deal with old Nintendo music drivers and how to deal with a

game that uses several different addresses that switch the tunes. A way to design an

init routine to make sure that you can include the music and sound effects in your

rip.

Level 8 - This level shows you how to deal with indirect routines that have code

stored in WRAM and how to trace and deduce address calls.

Level 9 - This level deals with a pirate game and one that uses tons of init entry

points for the tunes and how to consolidate them using an indirect jump routine.

Level 10 - This level deals with initializing the sound registers in WRAM so that

the NSF will play. Sometimes you will need to do this, other times you will not.

Keep a close eye on the games that write to the sound registers in WRAM.

Level 11 - This level states a method where you can isolate and dump the correct

banks that contain the sound driver when you're dealing with a game that writes

indirectly to the sound registers. Back in the day, Nesten would not snap on a

indirect write.

Level 12 - This is the optimization level. I have covered some methods briefly,

including paging optimization which is a lot more work but trims the NSF as much

as you can by trimming the first and the last banks based on how you're loading the

banks into NES memory, respectively. A warning to all; you don't want to optimize

too much as this can potentially comprimise some part of the rip. I've done this a

few times myself and figured it out sometime later.

Using all of the previous levels, you can potentially rip nearly all non-bank

switching games there are in existance. There are exceptions to this rule and of

course you'll need to be inventive in dealing with some games. Also, I might add

that if you're using this document to learn how to rip NSF's, if you've gotten to this

point you could consider yourself a Level 13 NSF ripper :), assuming that you can

use the methods described in this level.

Tricks of the Trade

We will examine the game Final Fantasy 1. We are going to use Unofficial

Nintendulator in this example. Unofficial Nintendulator has a very useful debugger

with some debug functions that are not available in other emulators. That is one

reason why I use many emulators to rip NSFs.

First set a write breakpoint to the sound registers when you're on the first screen

with music which happens to be the prelude I believe, I usually set a range $4000 -

$4009 to be on the safe side. The following code will be shown in the debugger.

B0C1 8D 01 40 STA $4001 = #FF

B0C4 A5 BE LDA $BE = #CF

B0C6 8D 02 40 STA $4002 = #FF

B0C9 A5 BF LDA $BF = #02

B0CB 8D 03 40 STA $4003 = #FF

B0CE A9 80 LDA #$80

B0D0 85 BF STA $BF = #02

B0D2 4C E1 B0 JMP $B0E1

You can trace this all the way back to find the play entry address which is address

$B000. Now the init entry point is what you want and here is what we will do.

While the debugger is still frozen and emulation stopped, uncheck the breakpoint

on the sound register writes. Now what you'll do is set a read break point for

addresses $8000 - $BFFF. I have chosen this range because this is where the code

is located at and this mapper is Mapper 1 which is a 16K bank sized select game.

Sometimes data will be located in the $C000 - $FFF9 area, but not this game. You

will get a few different snaps, one of them is for some misc sound data (that you

can continue to debug if you wish) and other snaps are for the sound data being

read that you're looking for, you'll have to click run a few times to see what I'm

talking about. Now for the code.

B1A3 A0 00 LDY #$00

B1A5 B1 18 LDA ($18),Y @ $80E1 = #07

B1A7 C9 C0 CMP #$C0

B1A9 B0 11 BCS $B1BC

B1AB 20 50 B2 JSR $B250

B1AE B5 00 LDA $00,X @ $00B0 = #E1

B1B0 18 CLC

B1B1 69 01 ADC #$01

B1B3 95 00 STA $00,X @ $00B0 = #E1

B1B5 B5 01 LDA $01,X @ $00B1 = #80

B1B7 69 00 ADC #$00

B1B9 95 01 STA $01,X @ $00B1 = #80

Let's see, by looking at the code, the data for this tune is at $80E1. If you continue

to debug and track the data, you'll eventually find out that the data has a pointer

table for each sound channel per tune.

Now for the good part of Unofficial Nintendulator. We have confirmed that the

data is being loaded from the $8xxx range and the code is being executed at the

$Bxxx range. We look at the PRG area on the debugger and note that you have 8

boxes and that means that each box is a 4K bank, perfect for NSF rippers. Each box

will tell you the Offset of the bank loaded, where the bank came from in the ROM.

$8000, $9000, $A000, $B000, $C000, $D000, $E000, $F000 - These are the boxes

that are viewable and what do you know, What's in the $8000 box is Offset 34010

(yes, the iNES header is accounted for, don't add it), $B000 is 37010. After quite a

bit more debugging, I deduced that $8000 - $BFFF is used for this music driver, the

end of the bank could be trimmed afterwards.

The point of using this feature is that you could select Offset 34010 - 3800F from a

hex editor and extract this bank from the ROM, driver would be extracted and

isolated. Also useful in picking out banks to use for bankswitching NSFs, as you

will see later on in this document.

Out of curiosity and the fact that you could eventually debug to this point in the

ROM, let's go to Offset 34010 in the ROM and take a look in a hex editor. What do

you know, any person that does a lot of hex editing will immediately recognize the

data as pointers. Ok, let's show ya a few bytes.

C080BD81BC820000C1820B835783

Let's break this data string down a bit. CO80, could that be $80C0? Sure enough, it

is and it's a pointer to a string of data. Evenually you'll find out that a group of three

pointers are for one tune and one pointer represents one sound channel. This game

use Square 1, Square 2, Triangle channels. So we have $80C0, $81BD, $82BC.

Let's set a read breakpoint to address $80C0 and what do you know, we have a snap

when you reset the game. Here is the code.

B1A5 B1 18 LDA ($18),Y @ $80C0 = #FD ; This is what we are

looking for.

B1A7 C9 C0 CMP #$C0

B1A9 B0 11 BCS $B1BC

B1AB 20 50 B2 JSR $B250

So we found out where the data point is being loaded at and it's using address $18

in WRAM as an indirect read. The code that we are looking at is located at $B1A5,

so then let's look up in the disassembly or the debugger that you're using and see

what we can find. Ok, here we go.

$B050:B1 10 LDA ($10),Y @ $0018 = #$00

$B052:95 00 STA $00,X @ $0000 = #$00

$B054:C8 INY

$B055:B1 10 LDA ($10),Y @ $0018 = #$00

$B057:95 01 STA $01,X @ $0001 = #$00

$B059:20 89 B1 JSR $B189

Ok, we are hot on the tracks of the entry point to the init code, let's keep looking up

and here is what we shall see.

$B007:29 3F AND #$3F

$B009:85 4B STA $004B = #$02

$B00B:A9 00 LDA #$00

$B00D:85 4C STA $004C = #$00

$B00F:A9 00 LDA #$00

$B011:85 7E STA $007E = #$00

$B013:8D 02 40 STA $4002 = #$FF

$B016:8D 03 40 STA $4003 = #$FF

$B019:8D 06 40 STA $4006 = #$FF

$B01C:8D 07 40 STA $4007 = #$FF

$B01F:8D 0A 40 STA $400A = #$FF

$B022:8D 0B 40 STA $400B = #$FF

$B025:8D 0E 40 STA $400E = #$FF

$B028:A9 30 LDA #$30

$B02A:8D 00 40 STA $4000 = #$FF

$B02D:8D 04 40 STA $4004 = #$FF

$B030:8D 08 40 STA $4008 = #$FF

$B033:8D 0C 40 STA $400C = #$FF

$B036:A5 4B LDA $004B = #$02

This code is right after the BCC opcode, let's try address $B007 as our init entry

point and what do you know, music comes out so nice and sweet, success is at hand

in your NSF ripping. Have fun listening to the rip and don't even try to submit this

rip. It was ripped by Necrosaro in 1999. This is the address chosen for the rip and

we could shift the address up a bit to $B003 and use some additional code to

conform to the original logic structure, but just the same the rip works just fine as it

was ripped.

In summary this is a method to use in tracking down init addresses and/or to know

where the data is located at in the ROM. Knowing where the data is located at can

be useful in tracking down the banks for bankswitching NSFs. This method is very

useful for NES music hackers as well.

Another trick of the trade is that when you have an NSF that just won't play no

matter what address you chose for the init entry point, or what addresses you are

poking. Well, you can open two instances of FCEUXDSP, one with the NSF and

one with the ROM open and playing music. Open the hex editor from tools in the

FCEUXDSP that is running the ROM and select a page from WRAM, copy and

paste into the FCEUXDSP version that is running the NSF, chances are that if you

have the play address correctly, the NSF will begin to play, but not always. You

can tinker with this page and change values, you can then deduce what you need to

look for in the disassembly, or in writing your own code to boot up the NSF. Make

sure that you carefully choose which page you are pasting into WRAM, you should

know which one to paste after looking at the disassembly.

If a given ROM is not supported in FCEUXDSP, then you can use FCEU MOD to

dump any page of WRAM that you wish. Find a select area in the NSF and paste it

there, make sure that you do not go out of bounds of the NES address range. You

may have to delete an equal section in order to accomodate this new piece of data.

In your custom init code, you will have to write some code in order to load the data

back into the page from which you dumped it from. For example, this code will

load the entire page back into Zero Page WRAM.

PHA

LDA #$00

TAX

LDA $8000,X

STA $00,X

INX

CPX #$FF

BCC lda_8000

PLA

RTS

There are many more tricks to figure out how to get an NSF to play and now I

leave this up to you to figure these things out, hopefully you will be able to use

what I have shown you to make some killer NSF rips. One more thing, make sure

that you are very careful in your choice as to which game that you wish to rip,

many have already been ripped and/or are imcomplete. UGETAB has made a list of

NSF rips from various sites and collection files. I often refer to this list.

LEVEL 14 NSF Repair/Clean-up

A good deal of Level 14 can be used at any stage of the NSF ripper's current skill

level. However, some things that I will show you in this level will require a bit of

effort to make an NSF rip clean and as compatible with many different players and

emulators as possible. You can use this level with your own rips and/or to repair

other older rips or ones that are not quite complete or compatible with other

players.

Making sure that a NSF header is clean and of precise size can indeed make the

difference for a properly ripped NSF. As far as the size of the header is concerned,

it's 128 bytes or 7Fh in hexidecimal, so the range of a NSF header is 0h - 7F in a

hex editor. The data of the NSF starts at 80h, and if the header is not of proper size,

the address space is thrown off by how many bytes the header is off or over sized

at.

The next thing to check is that the NESM, 1A is in the right place in the NSF

header, use the specs for reference. Also, the NSF version number must be correct,

the NSF I'm looking at now states it's 01. The starting tune must always start at 1,

the number of total tunes should also be correct and at the right Offset in the

header. The next six bytes are the Load, Init and Play address calls respectively,

you should check to make sure these are correct, they make the difference between

a playing and non-playing NSF commonly.

Sometimes you'll notice that a rip plays a bit too fast. In this case it's a wise idea to

check the header at location 7Ah. This is the byte that determines if the rip is NTSC

or PAL, or even dual NTSC/PAL. 00 is NTSC, 01 is PAL, 02 is dual NTSC/PAL.

It is important to make sure that 7B is set appropiately depending on what type of

rip this is. Games that are designated as (E) are almost always PAL. Some Chinese

pirate games are PAL or SECAM, SECAM from what I understand is a format

designed by the French or in use by the French that is near NTSC speeds, so

SECAM can use NTSC setting, the speed can also be adjusted.

Depending on what type of rip the game is in regards to NTSC or PAL, you can

adjust the PB (Play Back) speed in the header. By aware that some players ignore

this setting. The setting should be 411A for 60HZ PB, for NTSC tunes, use the

formula in the NSF spec to calculate a different HZ playback speeds.

Now it's time for Extra Sound Chip Support. If you have a normal NSF that does

not use expansion sound, 7Bh in the header should always be 00. According to the

NSF spec, depending on which bit is set in the byte that is at 7Bh, that determines

what expansion sound chip is in use for the rip. To my knowledge, there are no

commercial games that have used more than one expansion chip, that being said,

only one sound chip will be used per rip and the header should reflect this. There

are some Homebrew NSFs out there that use two or more expansion sound chips,

the header is set appropriately.

Now we will deal with 70h - 77h, which are the bankswitching bytes in the header.

The bytes in this range should always be all 00 if we are dealing with a non-

bankswitched tune or a rip that is not using paging optimization. In a continuous

NSF rip, starting at the load address, the 4K banks shall be loaded sequencially and

therefore would require no bankswitching. If the rip uses bankswitching, then you

would have to debug the rip and determine what banks are used and how they are

loaded. You use the bankswitching bytes to set up the address space and then you

write code that switches the banks based on the tune that you're playing. Currently

this is out of the scope of this level but is mentioned so that 70h - 77h should be

clean and set properly.

Last but not least is the name of the game, composer, company credit fields. These

must be included in the rip and when one of these fields is not known, < ? > must

be filled in this field. Also, I might mention that you have a limit as to how many

characters that you can use for each of the three information fields, the last byte

must always be null terminate or 00, cannot be over-written.

As I had stated earlier, having a clean and properly set header can make the

difference in a properly ripped NSF.

The data section of the NSF should be clean and isolated from the rest of the game

play code and data. Given that statement, the following should be known for having

a clean rip. A NSF does not use the standard vectored interrupt table of the

NES/6502 CPU, RTI should be changed to RTS should most of the init and/or play

code be contained within any of the interrupts, or rewritten to properly isolate the

sound code.

An NSF has the following illegal address ranges that must be changed and/or

removed in order to conform to the spec and for proper playback. Commonly these

illegal address ranges are write only, in some cases even reading can be considered

illegal. For example, reading any of the graphical display registers is considered

illegal.

 $0800 - $5FFF (Exluding NSF bankswitch registers)

 $8000 - $FFFF (Exception: FDS)

 $E000 - $FFFF Illegal area for FDS writes

 $2000 - $3FFF PPU/Sprite - graphical display/scroll, etc

 $4014 DMA Transfer

 $4016 Joypad controller 1

 Any cart/device specific register that does not have anything to do with

sound and/or the NSF spec.

All data and code that is associated with the illegal address ranges should be

changed or isolated for a proper rip, that is the main point of this section. Another

example, if you have data in the sound driver that is being written and/or read in the

$0800 - $5FFF range, these addresses must be changed to somewhere within the

legal WRAM area, maybe to an addresses unmirrored counterpart, perhaps?

One big problem with many NSFs that don't play in all players and emulators, is

timing out. When an NSF times out, this means that somewhere the NSF is stuck in

a loop or in a bunch of data and does not return, nor is the operation halted as it's

supposed to, for example in the init code.

I have listed a few reasons why an NSF could time out. Not to worry, usually there

is a solution if you debug the rip. Here are the possible causes of timing out and not

returning. Stack underflow or overflow, maybe the possibility of missing a PHA or

a PLA, these two opcodes work in pairs commonly. If you are missing one of these

opcodes in the code somewhere, add one where you think one is missing and see if

this solves the problem. When you return from a routine, then you wind up in an

address area that you had not intended which strands you out in the middle of no

where in the middle of some data that continues on for seemingly forever. That is

another possible cause of missing one of the PHA/PLA pair.

I have also ran into a few games where the game was not coded correctly, you

would have for example JSR $xxxx, random data after the JSR. After the call was

executed, of course you could possibly return and when you do, you run into a big

mess. This is solved by remapping the call to some freespace and placing an RTS at

the end in most cases. If the data is irrelevant to the sound driver, then you could

place a RTS right after the JSR $xxxx operation.

Last but not least of this timing out problem is the infinite loop. You can change the

code and NOP the branch out or add an RTS, this solves the problem but not

always. Another solution is to limit the number of times that a game would loop. I

sometimes do it by using a compare value, the compare value will be how many

times the loop will be executed. The loop using the compare value will set a flag

once the value is equal or greater. A branch afterwards will not branch and so you

keep the code from going into an infinite loop. Try the NSF again to see if it times

out.

CMP #$10

BCC cmp_10

This is the basics of the code and perhaps you may have to design it to be a little

more complex to mesh with the code. There are other ways of dealing with infinite

loop problems, it will be your job to figure this out. Also, you can use SlickNSF to

log an NSF. If the log is too large to open in NotePad, I recommend PFE

(Programmer's File Editor).

When ripping an NSF, I often check "Don't wait for Play Return" in Config 3 in

NotSoFatSo. This way you have a better chance of finding the init/play address,

you can clean up the routine after you find it. Make sure that you don't forget to

uncheck that box to find out if the NSF will play, when it does play you'll know

that your NSF plays without timing out.

You have other boxes and they are the following.

 Ignore BRK

 Ignore Illegal Opcodes

 Don't wait for Play Return

 Reset 6502 regs

 Ignore NSF Version Number

 Force $4017 write

The original purpose of this config was to provide some compatibility with many

NSF rips, mostly the older rips. However, I use it to trouble shoot NSFs. If I need

to check any of those boxes to make an NSF work, then I need to debug the rip and

find out what is wrong. Sometimes a re-rip is in order in more extreme cases if an

NSF does not work properly.

There is the possibility that an NSF is missing some songs. Sometimes correcting

the LUT (Look Up Table) will help add these missing tunes. Sometimes a bank is

missing that contains the data needed to play the tunes missing. It is your job to

figure out why the tunes are missing. If the NSF is missing some tunes, indicate the

NSF as incomplete, later on the possibility of someone adding the tunes may decide

to repair the NSF.

Last but not least is the frame sequencer. The frame sequencer often makes a big

difference when activated by writing to $4017. Sometimes you'll notice a big

difference when you force a write in NotSoFatSo's Config #3, or when writing

some additional code in your init code. Many times $4017 is written to in a game to

time the music in the game to a certain speed. You can read up on this register in a

few documents about sound and NES architecture. In games where the sound driver

does not have a write to $4017, I include in my init code. You can write 00h or 80h.

LDA #$80

STA $4017

LEVEL 15 Nintendo - Backgammon FDS

Now comes the time to learn how to rip NSF's from FDS disks. FDS (Famicom

Disk System) is a NES add-on that uses disks. Lucky for us emulation people,

many disks have been dumped so that we may play them. The FDS uses the 6502

instruction set, all of the NES specific address registers, in addition you have the

registers that are concerned with disk loading and the operation of the unit itself.

The great thing about the FDS system is that in addition to the NES APU, you have

one FDS expansion sound channel. Many FDS games use this expansion sound

channel, but not all will use this channel, be aware of this and browse the code to

know for a fact.

The first thing that I am going to do is paste verbatim from a document by Disch, a

list of sound registers for the FDS sound expansion channel. You can read the

document by Disch and other FDS documents as reference if you do not know

much about the FDS. The register list is as follows.

4040h..407Fh - Wave RAM - 64 x 6bit sample data (Read/Write)

Writes to these registers are ignored unless Write Mode is turned on (see

register 4089h).

4089h - Wave RAM Control (Write Only) Bit7 Wave Write Mode (1=Stop

Sound output & Allow to write to Wave RAM)

 Bit6-2 Not used

 Bit1-0 Master Volume (0-3 = 100%,66%,50%,40% =

30/30,20/30,15/30,12/30)

4082h - Wave RAM Sample Rate LSB (Write Only) Bit7-0 Lower 8 bits of the

main unit's frequency (upper 4 bits in 4083h)

4083h - Wave RAM Sample Rate MSB and Control (Write Only) Bit7 Main

Unit disable (0=Enable, 1=Disable Sound Output)

 Bit6 Envelope disable (0=Normal, 1=Disable Volume/Sweep Envelopes)

 Bit5-4 Not used

 Bit3-0 Upper 4 bits of the main unit's frequency

Main Unit / Sample Rate: (per entry of the 64-entry wave ram) F = 1.79MHz

* (Freq + Mod) / 65536

 Mod = Frequency change based on the Modulation unit

If the 12bit frequency is zero, the Main unit is disabled (channel silent).

408Ah - Envelope Base Frequency (Write Only) Bit7-0 Envelope Base

Frequency, Fbase=1.79MHz/8/N

Fbase used by 4080h and 4084h. Volume/Sweep Envelope are disabled if N=0.

4080h - Volume Envelope (Write Only) Bit7 Volume Envelope Mode

(0=Volume Envelope, 1=Fixed Volume)

 Bit6 Volume Envelope Direction (When enabled / at specified rate)

 0=Decrease Volume by 1 (only if Volume>00h)

 1=Increase Volume by 1 (only if Volume<20h)

 Bit5-0 When Bit7=1: Volume Level (0-20h=Muted-Loudest, 21h-3Fh=Same as

20h)

 Bit5-0 When Bit7=0: Volume Envelope Rate, F=Fbase/(N+1)

The volume level can be set to 00h-3Fh by write with Bit7=1, this level is also used

as initial volume when switching to envelope mode by setting Bit7=0.

In decrease mode, initial values 21h-3Fh are resulting delayed decrease; volume

stays at maximum level until the value gets smaller than 20h.

4084h - Sweep Envelope (Write Only) Bit7 Sweep Envelope Disable

(1=Disable)

 Bit6 Sweep Envelope Mode (0=Decrease, 1=Increase sweep gain)

 Bit5-0 When Bit7=1: Sweep Gain

 Bit5-0 When Bit7=0: Sweep Envelope Rate, F=Fbase/(N+1)

4085h - Sweep Bias (Write Only) Bit7 Not used

 Bit6-0 Sweep Bias (signed 7bit; -40h..+3Fh)

Sweep Bias is a used by the Modulation unit in calculating frequency bend. Sweep

Bias negative: Modulation unit will be bending frequency down. Sweep Bias

positive: Modulation unit will be bending frequency up. Any write to Sweep Bias

register resets Modulation Unit's address to zero. This address is used by the

Modulation Unit when looking up entries written to the Modulation table (via

$4088).
4086h - Modulation Frequency LSB (Write Only) Bit7-0 Lower 8bit of 12bit

Modulation frequency

4087h - Modulation Frequency MSB (Write Only) Bit7 Modulation

Enable/Disable (0=Enable, 1=Disable)

 Bit6-4 Not used

 Bit3-0 Upper 4bit of 12bit Modulation frequency

Modulation Unit: Modulation Rate (per entry of the 64-entry modulation

table) F = 1.79MHz * ModFreq / 65536

If the 12bit frequency is zero, the Modulation unit is disabled.

4088h - Modulation Table (Write Only) Bit7-3 Not used

 Bit2-0 Modulation input

Writing to this register puts the value written at the END of the modulation table

twice, and shifts each entry already in the table 2 places to the front. The first

2 entries of the Modulation table are shifted out and lost. old, old <-- ModTable_0

<-- ModTable_1 <-- ... <-- ModTable_63 <-- new, new
4090h - Current Volume Gain Level (6bit) (Read Only)

4092h - Current Sweep Gain Level (6bit) (Read Only)

4023h - 2C33 I/O Control Port Bit0 Disk I/O (0=Disable, 1=Enable)

 Bit1 Sound (0=Disable, 1=Enable)

FDS Sound by Disch, Release 1, 07/14/2004, based on info from Nori.

Read this list and become familiar with the FDS sound registers, when you see any

of these registers in a disassembly of one of the files in a disk, chances are that this

game could be using FDS sound.

Now is the time to learn how to rip a NSF from a FDS game. We can use two

methods to rip this NSF, one of them is dumping the active contents of memory in

Nesten or FECU, and debug until you find the Play and Init address calls. However,

we are not going to extract the NSF from the game in this way. The reason is

because the skills you learn here will help you become accustomed to ripping NSFs

from a disk that uses both sides of the disk and/or a game that uses two disks that

use both sides of each disk. For now, you'll learn how to rip from a FDS game that

uses only one side of one disk. A little history about this NSF rip that I done back

in 08-03-2004. I had dumped this game using an emulator and the debugger, and

now I will show you the new method of ripping this game. This method will also

produce a much smaller and compact file for play.

The first thing that we are going to do is use FDS Explorer. FDS Explorer is a

utility that enables you to browse the contents of a disk, on both sides and all of the

disks of a given game. You can view the hex and disassembly of each file that you

wish to look at.

File # ID File Name Address Size Type

0 0 KYODAKU- $2800 224 NT

1 0 SOUND $C300 7417 PRG

2 0 BG-MAIN $6000 18816 PRG

3 1 CP $A980 4736 PRG

4 0 VECTOR $DFFA 6 PRG

5 16 BG-DEMO $A980 6528 PRG

6 32 BG-FINAL $A980 1664 PRG

7 1 BG-CHR10 $BE00 1280 PRG

8 0 BG-CHR11 $0200 512 PRG

9 0 BG-CHR12 $0600 512 PRG

10 1 BG-CHR00 $0000 8192 CHR

11 17 BG-CHR20 $1B00 1280 CHR

12 33 BG-CHR30 $1400 1536 CHR

Using FDS Explorer, you can see that the FDS game Backgammon has many files

on the A side of the disk. Your job is to figure out which file(s) contain the sound

driver and then extract them. Usually this task can be a frustrating and tedious job

to do, especially when you have to piece together the files and integrate them into

one NSF file using code that you have to write. The task for making an NSF from

Backgammon is about the easiest I've ever seen in my life.

The boot ID is 15 for this game. Any file that has a boot ID of equal to or less than

the game will be loaded at bootup, always keep that in mind in every FDS game

that you attempt to rip the NSF from. The file called SOUND has a boot ID of 0, is

a PRG (Program RAM) section of the disk and has the starting address at $C300,

file size 7417. Click on this file and view the hex and the disassembly from this

program, carefully look at the code to determine if this is in fact the file that

contains your sound driver. After examining the file, it is in fact the entire sound

driver. Extract the file called SOUND into your NSF project folder as a .bin and

then slap a NSF header on it. Set a load address of $C300, since that's the start of

the music driver (and the file) and then you'll need to debug for the play and init

addresses respectively, is an easy task for this game. Make sure that you set the

sound expansion chip for FDS in the NSF header, the setting will be 04 in hex if

you're wondering. What you have now is a compact sized file, that plays excellent

FDS sound.

LEVEL 16 Tokuma Shoten - Clox -

Famimaga Disk Vol. 4 FDS

Now is the time to take the next step in FDS NSF ripping. We are going to use the

same method to extract an NSF from the disk as we had in level 15, even though

you could rip the NSF from an emulator dump. We are dealing with a one sided

disk that contains all of the data of the game, including the sound driver. Before we

get started, let's examine how interrupts are handled in a FDS game. Interrupts are

still pointed to in the same way, with the exception that they are dealt with

indirectly. FDS Interrupts, as far as I know are always located at the same address.

Here they are as follows.

 IRQ: $E1C7

 NMI: $E18B

 RESET: $EE24

While you're at it, open a debugger and set a NMI execute or PC same breakpoint

for the address $E18B, in the game Clox - Famimaga Disk Vol. 4. Here is the code

that you'll get.

$E18B:2C 00 01 BIT $0100 = #$C0

$E18E:10 08 BPL $E198

$E190:50 03 BVC $E195

$E192:6C FA DF JMP ($DFFA) = $D8A8

$E195:6C F8 DF JMP ($DFF8) = $0000

$E198:50 03 BVC $E19D

$E19A:6C F6 DF JMP ($DFF6) = $0000

More than likely the code will jump to $D8A8, in fact it does when I stepped the

code. This NMI routine will lead you to the play code entry point somewhere. You

could have easily also backtracked the stack in order to find the play address as

well.

Now it's time to get started in the ripping process. As we had done in level 15, we

will use FDS Explorer to examine the disk and to extract the file(s) that contain the

sound driver. Here is the list of files to browse.

File # ID File Name Address Size Type

0 0 KYODAKU- $2800 224 NT

1 0 LOGODATA $7020 11488 PRG

2 0 LOGOPROG $D800 2048 PRG

3 0 LOGOCHAR $0000 8192 CHR

4 16 CL100PRG $8D00 21248 PRG

5 17 CL100CHR $0000 8192 CHR

6 32 SAVEDATA $8CC0 64 PRG

This time we don't have a file that is named sound, so it's not going to be so easy of

a job this time, still not too bad though. Like level 15, this game has a Boot ID of

15, so examine all of the files with an ID 15 or less that are labled as PRG. If you

had done any debugging prior to opening up this file in FDS Explorer and I suggest

that you always do this, you would know that most if not all of the sound driver is

located in the $7xxx range. You can also examine the disassembly of each file in

FDS Explorer. Look at the list and determine which file has the $7xxx range

included. File #1, ID #0, LOGODATA, starting at $7020, size 11488 is the file that

we are looking for. Extract this file as a bin into your NSF project folder.

First thing, before we slap a header on the file is that we will padd the beginning of

the bank, get used to it, you may have to padd banks in other rips. This file's

address starts at $7020, what we want to do is for this file to start at $7000, so you

need to insert 20h at the beginning of the file. When you're done, if the first byte of

the unmodified file still lands on address $7020, then you done the job right. There

are other rips that you may have to padd the file at the beginning or end. The reason

why you may have to do this is because an NSF is like a ROM file, it uses banks

and not files like an FDS disk does. You may want to know what padding is, well

padding is a bunch of bytes to fill in space that you won't be using and to fill up the

rest of the bank. Commonly, 00 or FF is used for bank padding. 00 is often used in

FDS games when it's an area that will be modified by a PRG RAM file that is

loaded from the disk. I might mention that the FDS since it uses RAM instead of

ROM for it's program, this means that the code and data can be self-modifying,

anything in the $6000 - $DFFF range can be changed at anytime.

Slap a NSF header on your file, if you had done some debugging you would deduce

that your load/init/play addresses would be the following, $7000/$7447/$747B, in

addition to the init address, you have a bootstrap at $7400, $E0 is used to switch

the tune. However, you can't use any of these addresses because you want to

conform to the NSF spec and to make the NSF compatible to as many players as

possible. Especially the load address has to be $8000 and/or greater. All the main

address calls have to be equal to or higher than $8000, in the range of $8000 -

$FFFF. We can do this by using the bankswitching bytes in the header and writing

some simple code in the init.

As I had listed in level 12, Optimization, I will list again the bankswitch bytes and

what they correspond to, with only one difference for FDS NSFs. We will use the

registers as though we were optimizing, it's a trick.

 70h - $8000 - $8FFF

 71h - $9000 - $9FFF

 72h - $A000 - $AFFF

 73h - $B000 - $BFFF

 74h - $C000 - $CFFF

 75h - $D000 - $DFFF

 76h - $E000 - $EFFF (FDS: $6000 - $6FFF)

 77h - $F000 - $FFFF (FDS: $7000 - $7FFF)

76h and 77h can be used for both addresses, normal bankswitching and FDS

bankswitching. What are going to do now is determine what banks are being used

in this NSF. The following are used - $7000, $8000, $9000 currently before

optimization. The three banks are also in order starting with the $7000 bank. We

set the load address at $8000, and then we set the bankswitch bytes in the header as

follows: 01,02,00,00,00,00,00,00. This allows you to load below $8000, with

minimal bank shuffling in the ripping process.

Now it is time to write the init code, you must find some space and I suggest that

you do so higher up in the $8000 bank or somewhere in the $9000 bank. Here is

how I suggest that you design your init code for this game, since you must also load

the FDS $7000 bank into memory. Before we go any farther, a little about the

bankswitching registers for FDS NSF, keep in mind that the bankswitching

registers are a little different than normal NSF bankswitching registers, although

you may still use the normal mode if you do not need to load anything below

$8000.

 $5FF6 - $6000 - $6FFF (FDS Only)

 $5FF7 - $7000 - $7FFF (FDS Only)

 $5FF8 - $8000 - $8FFF

 $5FF9 - $9000 - $9FFF

 $5FFA - $A000 - $AFFF

 $5FFB - $B000 - $BFFF

 $5FFC - $C000 - $CFFF

 $5FFD - $D000 - $DFFF

 $5FFE - $E000 - $EFFF

 $5FFF - $F000 - $FFFF

Now that you see all of the bankswitching registers, only the FDS registers will be

used and not for bankswitching but for loading in banks that are below $8000 in

this level. Now I will show you some basic code that I will use for this game.

PHA

LDA #$00

STA $5FF7 ; load first bank in the file to $7000

JSR $7400

PLA

TAX

LDA $tune_index,X

STA $E0

JSR $7447

RTS

One more thing before we end this level. This is one method of loading banks

below $8000, there are other methods depending on the game that you rip. You will

notice that this game does not have FDS expansion sound, but the FDS byte is set

in the header. The FDS header byte setting serves a two-fold purpose, one of them

is obvious and the other is to use FDS bankswitching. So a rip may have the FDS

set in the header but not have any expansion sound, chances are that this tune loads

banks below $8000 and/or is in fact bankswitching. It is possible that a game has

expansion sound, loads below $8000 and is also bankswitching, so be aware of this

fact.

LEVEL 17 Takara - Transformers The

Head Masters FDS

Now we step up in difficulty, again we are going to rip a NSF from a FDS game

called Transformers - The Head Masters. Here is where my insistance about ripping

from the disk becoming useful, because you'll more than likely never be able to rip

the NSF from this game without browsing the contents of the disk. What I am

going to do is use emulator dumping in combination with disk browsing to rip this

game. Load up Nesten or FCEU MOD with the game Transformers - The Head

Masters and debug for the sound registers in the usual way and then dump $8000 -

$FFFF, or $C000 - $FFFF in FCEU MOD. After you have dumped the contents of

memory, disassemble the bank and debug for the play and init address calls

respectively. You'll find them at C000(load)/C061(init)/C057(play) respectively, in

addition a bootstrap at $C034, tune switching address $28. Write some init code

and you'll find that you have a bunch of sound effects and one tune on side A of the

disk. If you do the same for side B, you'll get about the same thing, a different tune

and some sound effects. So it's time to browse both sides of the disk.

SIDE A

File # ID File Name Address Size Type

0 0 KYODAKU- $2800 224 NT

1 6 SPRITE $0000 2144 CHR

2 7 *FIX* $1000 4080 CHR

3 8 PROG.001 $6200 16384 PRG

4 9 PROG.002 $A200 10496 PRG

5 11 *TITLE* $D280 2480 PRG

6 12 JMP-TBL $DFE0 32 PRG

7 38 *LASTMP* $C580 6720 PRG

8 38 PLLASTCG $0980 1152 CHR

9 38 *LASTCG* $1700 1408 CHR

10 48 *END-PRO $D280 2560 PRG

11 48 *ENDSCG $0980 320 CHR

12 48 *ENDFCG $1700 960 CHR

Wow, we have a lot of files here, and no file that specifically says sound. The more

you look at this pile the worse it looks and you'll find out soon enough and then the

work load gets worse on SIDE B of the disk. This disk has a Boot ID of 15 like the

others. Files 0 - 6 are loaded up at bootup, that is the first clue to locating the files

that you need, the next one is that if you debugged and dumped active memory

from one of the emulators then you'll know the address range of the sound driver

code is located from $C034 - $C455. Check each file, the one that has sound driver

code is File # 4. PROG.002, address $A200, size 10496, PRG RAM. You'll get no

sound from this file, I debugged the file and come to find out, it's missing the

sequence data. So I decided to debug the disk again to locate the missing sequence

data. Set a write breakpoint range $4000 - $4004 in FCEUD. Click run a few times

if you have to, to figure out where the sequence data is located at. It is known

already that the sequence data is not located in the $A000 - $CAFF range.

$C18B:0A ASL

$C18C:AA TAX

$C18D:B1 32 LDA ($32),Y @ $D724 = #$B4

$C18F:9D 00 40 STA $4000,X @ $4000 = #$FF

$C192:E0 07 CPX #$07

$C194:B0 06 BCS $C19C

$C196:C8 INY

$C197:B1 32 LDA ($32),Y @ $D724 = #$B4

$C199:9D 01 40 STA $4001,X @ $4001 = #$FF

$C19C:68 PLA

$C19D:AA TAX

$C19E:C8 INY

$C19F:60 RTS

I have snapped the debugger a few times and wound up in the range of $D5xx -

$D8xx, I believe this is where the sequence data is located at. Let's take a look at

the FDS file list again and note all of the files that could contain this address range

and possibly the sequence data. They are as follows.

 TITLE

 LASTMP

 *END-PRO

One way to find out without playing through the entire game is to replace the

known sequence data with one of the files on the disk. I have a feeling that we are

already playing TITLE, on the title screen of the game, so we can try the file

*END-PRO, address $D280 which seems more likely to contain the sequence data

than the other file *LASTMP*, later on we will find out this file contains music as

well.

Take the emulator dump and trim off off $8000 - $BFFF if you haven't done so

already, or dumped it from $C000 - $FFFF. Next you'll extract the file *END-PRO

from the disk into your NSF project folder. The starting address of this file is

$D200, so in order to test this file, trim off $D200 - $FFFF from your emulator

dump and then append this file, you'll find out that a different tune plays, so this

file is good, save it. You can then trim that file off that you appended to your

emulator dump and replace it with the file *TITLE*, sure enough you hear the

familiar title screen music once again. In the file *LASTMP*, go to address $D200

and copy and paste that address and the remainder of the file and append to your

once again trimmed emulator dump, again another tune, so that's three tunes on this

side of the disk. We need to tally up the results of SIDE B of the disk before we

decide upon a strategy of ripping this game. Dealing with the fact that all three

tunes' sequence data is located at the same address location, this could be a

problem. Onward we go.

SIDE B

File # ID File Name Address Size Type

0 16 PL_CGSET $C680 1408 PRG

1 32 *RESMAP* $CB00 5312 PRG

2 32 ENEMYCGE $0980 1664 CHR

3 32 **RESCG* $1700 1632 CHR

4 33 *BONUS * $C580 896 PRG

5 33 *REMMAP* $D280 3392 PRG

6 33 **REMCG* $1700 944 CHR

7 34 *RSSMAP* $CB00 5312 PRG

8 34 ENEMYCGS $0980 1664 CHR

9 34 **RSSCG* $1700 1120 CHR

10 35 *BONUS * $C580 896 PRG

11 35 *RSMMAP* $D280 3392 PRG

12 35 **RSMCG* $1700 656 CHR

13 36 *RJSMAP* $CB00 5312 PRG

14 36 ENEMYCGJ $0980 1664 CHR

15 36 **RJSCG* $1700 1440 CHR

16 37 *BONUS * $C580 896 PRG

17 37 *RJMMAP* $D280 896 PRG

18 37 **RJMCG* $1700 944 CHR

19 64 NAMEPRO $D600 1792 PRG

20 65 NAMEDATA $0700 128 PRG

We have a total of 21 files on SIDE B of the disk, nearly twice as much as SIDE A,

but not quite. Even though we have more files to deal with, the structure of the data

is not too much different, nor are the file names. It's easier to deduce which files are

the sequence data, because any file that contains the address range $D280 will be

the files that we extract, you can test those files out, as we had for SIDE A. Here

are the files to extract from this side of the disk.

 1 - *RESMAP*

 5 - *REMMAP*

 7 - *RSSMAP*

 11 - *RSMMAP*

 13 - *RJSMAP*

 17 - *RJMMAP*

That's 6 music files on SIDE B, adding the 3 from SIDE A, that makes 9 tunes in

total. I'm currious as to the files that are at $CB00, what is the data used for, before

the verified sequence data, let's check it out. I have just verified that the data is not

part of the sound driver, this fact may help us complete the NSF a little easier. You

can also set a read breakpoint for the address range $CB00 - $D27F and check it

out yourself, do this once you reach the level on SIDE B.

First of all, let's trim those files that start at $CB00, then we will calculate how

much space these files will take in total. We have 9 files that are betweeen 2.5K

and 3.31K, 3 of those files are duplicate songs, so we'll not use three files. Now we

are going to set up the banks on the NSF, using the emulator dump, padd the last

bank until it's reached it's last byte, $DFFF. The next thing that you want to do is

add a bank that will be $E000 - $EFFF, insert 1000h in padding, 00's or FF's.

You're going to use this bank for your code, the rest of the NSF does not have

enough space for code and data indexes. Now you will set your NSF bankswitch

header bytes up as follows, 00,00,00,00,00,01,02,00. 00,01,02 is what you're

concerned with since you're using banks $C000, $D000 and $E000. Now you're

ready to padd the 6 files and convert them into banks. Again in this level we are

using a NSF paging optimization trick. In the next level is how we will deal with

straight forward bankswitching according to the spec.

Since you trimmed your files earlier on, they should be clean as possible and ready

to convert into banks. You have 6 banks, some of them are of the same size. For

example, *TITLE * has a starting address of $D280, you want to make this file

start at $D000. Simply add 280h to the beginning of the file with a hex editor of

your choice, at the end of the file you'll have to use a calculator on some of them,

this one I believe you only add 40h in bytes. Do this with each file and append

them on to the end, one at a time. When you're done, you should have a file size of

about 32896 with the NSF header prepended, that's assuming that you added 6 - 4K

banks.

Now it's time to write some init code in the $E000 bank, my code is right at the

beginning. What makes this rip kind of tricky is that sequence data for each of the 6

tunes starts at $D280, and they are of the same tune number which is 10h. Here is

how I'm going to handle it.

PHA

LDA #$80

STA $4017

JSR $C034 ; Bootstrap code

PLA

LDA $bankswitch_index,X

STA $5FFD ; Switch the bank in the $D000 - $DFFF range

LDA $tune_index,X

STA $28

JMP $C057 ; Jump to main init

bankswitch_index: .db

030706040105010

10101

tune_index: .db 1010101010100102030405060708090A0B0C0D0E

The code looks pretty simple, however there is more here than what meets the eye.

As I said before, all of the tunes and not the sound effects have an index number of

10h, as you can see with six 10h's in a row, normally you would never see this in a

normal NSF rip. The bankswitching corresponds to the tune index, if you change

the first six bankswitch index bytes, that is how you order the tunes and how the

banks are loaded at the same time, remember one tune per file that we converted to

a bank. The rest of the 01's are to make sure the $D000 - $DFFF bank stays loaded

while the sound effects play. Make sure that you set the header for FDS sound,

indeed this rip has expansion sound. Enjoy listening to the music after doing this

tedious job.

LEVEL 18 Bankswitching

 As many know, the address space for active loaded ROM memory is $8000 -

$FFFF. When you have more banks and data than what can fit into this space is

when you need to use bankswitching. Also there is a situation where you have a

few banks that need to be loaded into a certain memory range, like $8000 $8FFF

for example. Many games have done this, such as Metroid, Zelda, and many many

more.

 However, all we need to do is use bankswitching for NSF files that have

eliminated everything but the driver or music engine. Before we get into the

process, I am going to describe bank sizes for you.

Bank Size

Select

Hex

Size
Address Range Mapper

4KB 1000h Variable NSF

8KB 2000h Variable MMC5

16KB 4000h
$8000 - $BFFF/$C000 -

$FFFF
MMC1

32KB 8000h $8000 - $FFFF AOROM

 This chart will generically handle nearly any mapper. For example, MMC3 or

mapper 4 is either 8KB or 16KB bankswize select. AOROM, which is listed is

32KB bankseized select, or what most people are familiar with, that's Mapper 7.

There are other mappers that will not be handled well by the chart that I showed

you. MMC2 or Mapper 9 is a good exmple. Mapper 9 has a 24KB fixed bank at

$A000 - $FFFF, the 8KB bank is switched in and out at $8000 - $9FFF. Another

example would be Mapper 42, this is a FDS port that has a fixed 32K bank at

$8000 - $FFFF, a 8KB bank is switched in and out in address range $6000 - $7FFF.

How you deal with these odd mappers depends on the sound driver and in some

cases, takes some strategy in order to rip. MMC2 no longer has any games that

need to be ripped. However, one may pop up in the future, so I mention it to be

complete. For FDS port games, I suggest to set the FDS bit in the header and rip it

as though it was a FDS game (if the sound data or code is $6000 - $7FFF).

 Now it's time to start digging into a game to locate the banks. First off, I suggest

to make every available effort to prevent a NSF from bankswitching, if it's possible.

If you only have a string of code, then it should be moved near the sound engine

core, located in some freespace somewhere. For example, I have ripped a game

called Golden KTV. The game is standard ripping fair and quite easy until you find

out that only 3 tunes plays along with some sound effects. Since this is a large scale

game with a lot of tune selections in the game, it's logical to assume this game will

be bankswitching. Assuming that you made every available effort to locate the

tunes. Now, here is how I done it and that's by a indirect jump routine so that I

could simply plug in the banks and use the same index number for all the different

tunes.

Basic Initialization Start

00:F450:48 PHA

00:F451:A9 40 LDA #$40

00:F453:8D 17 40 STA $4017 = #$FF

00:F456:A9 00 LDA #$00

00:F458:8D 10 40 STA $4010 = #$FF

00:F45B:A9 1F LDA #$1F

00:F45D:8D 15 40 STA $4015 = #$FF ; turn all channels on

00:F460:68 PLA

00:F461:0A ASL

00:F462:AA TAX

00:F463:BD 70 F4 LDA $F470,X @ $F470 = #$F0

00:F466:85 00 STA $0000 = #$00 ; store low jump byte

00:F468:BD 71 F4 LDA $F471,X @ $F471 = #$F4

00:F46B:85 01 STA $0001 = #$00 ; store high jump byte

00:F46D:6C 00 00 JMP ($0000) = $0000

Intialize 1

00:F4F0:A9 04 LDA #$04

00:F4F2:85 02 STA $0002 = #$00 ; bankswitch variable 1

00:F4F4:20 20 F4 JSR $F420 ; bankswitch sub 1

00:F4F7:A9 09 LDA #$09 ; tune #

00:F4F9:4C 42 F4 JMP $F442

Bankswitch Sub-routine 1

00:F420:A5 02 LDA $0002 = #$00 ; bankswitch variable 1

00:F422:8D F8 5F STA $5FF8 = #$FF ; NSF reigster to load $8000 - $8FFF

00:F425:60 RTS

Intialize 2

00:F442:8D A6 07 STA $07A6 = #$00 ; tune variable

00:F445:20 9B CA JSR $CA9B ; jump to main sound driver

initialization

00:F448:60 RTS

 This is how I set the NSF up after I realized that only the sequence data is being

loaded at $8000 - $9FFF, the core of the sound driver is at $C000 - $DFFF, also

has DPCM. I gave you a quick run down of the code first and then you start

plugging in the banks. So, the game is UNROM or Mapper 2, which means 16KB

banksize select, there are 64 - 16KB sized banks. So, safe to say, I used a file

splitter and divided the ROM into 16KB sections and gradually worked on them to

remove anything that wasn't needed. I also saved $F000 - $FFFF as my

"hardwired" bank to write the code. Most of the tunes did not go over 4KB, those

that don't use address range $8000 - $8FFF, a few others use $8000 - $9FFF. I

loaded them using the following NSF bank registers, using them in the initialization

code.

 You may want to know how to load the banks, it's simple, you use the NSF

bankswitching registers to load the banks at certain times. I will now show you the

registers. No matter what strategy you use, these registers will switch the banks.

Register Address Range

$5FF6 $6000 - $6FFF

$5FF7 $7000 - $7FFF

$5FF8 $8000 - $8FFF

$5FF9 $9000 - $9FFF

$5FFA $A000 - $BFFF

$5FFB $B000 - $BFFF

$5FFC $C000 - $CFFF

$5FFD $D000 - $DFFF

$5FFE $E000 - $EFFF

$5FFF $F000 - $FFFF

 Next is the bankswitch bytes in the header, you can use these to preload certain banks at

reset of the NSF. You can learn more about them in Level 12. However, you can use them

here too and that's to help you get rid of any banks that you don't need. If you use all of the

core banks, you can sequencially number them 00h - 07h. Now, you may wonder how I

tracked down these banks. That is also simple for this rip, is why I chose this game for the

tutorial. Mapper 2 or UNROM switches banks by the following register, $8000 - $FFFF, you

write to any address in this range to switch the banks, depending on the number written. So,

set a write break point to $8000 - $FFFF, here is the code I got from it.

00:CFD4:A9 0F LDA #$0F

00:CFD6:8D 15 40 STA $4015 = #$FF

00:CFD9:A9 C0 LDA #$C0

00:CFDB:8D 17 40 STA $4017 = #$FF

00:CFDE:A9 00 LDA #$00

00:CFE0:8D 00 C0 STA $C000 = #$4C

 As you can see, the sound is turned on and the frame sequencer is written to, as bank 00 is

loaded by writing to $C000. We are on the right track, so we keep surfing the code as we

track down banks one at a time and plug them in as I mentioned above. That's about it for this

rip here.

 The next rip and that's for the game GLK Dance By FengLi, which was somewhat of a

difficult rip since the 4 sound driver cores were located in different address ranges, and is also

bankswitching. What I'll do is show you the code that I designed to handle the rip.

Initialize 1

00:B000:48 PHA

00:B001:A9 40 LDA #$40

00:B003:8D 17 40 STA $4017 = #$FF

00:B006:A9 1F LDA #$1F

00:B008:8D 15 40 STA $4015 = #$FF

00:B00B:68 PLA

00:B00C:AA TAX

00:B00D:BD 90 B0 LDA $B090,X @ $B090 = #$00

00:B010:85 00 STA $0000 = #$00 ; sound core variable

00:B012:8D 0E 01 STA $010E = #$00 ; Tune variable

00:B015:C9 09 CMP #$09

00:B017:B0 4D BCS $B066 ; Tune if greater than 09

00:B019:C9 06 CMP #$06

00:B01B:B0 29 BCS $B046

00:B01D:C9 03 CMP #$03

00:B01F:B0 03 BCS $B024

00:B021:4C 0C B9 JMP $B90C

00:B024:A9 05 LDA #$05 ; tunes 4-6

00:B026:8D FC 5F STA $5FFC = #$FF

00:B029:A9 06 LDA #$06

00:B02B:8D FD 5F STA $5FFD = #$FF

00:B02E:A9 07 LDA #$07

00:B030:8D FE 5F STA $5FFE = #$FF

00:B033:A9 08 LDA #$08

00:B035:8D FF 5F STA $5FFF = #$FF

00:B038:AD 0E 01 LDA $010E = #$00

00:B03B:18 CLC

00:B03C:E9 02 SBC #$02

00:B03E:8D 0E 01 STA $010E = #$00

00:B041:4C 14 C0 JMP $C014

Initialize 2

00:B046:A9 09 LDA #$09 ; tunes 7-9

00:B048:8D FC 5F STA $5FFC = #$FF

00:B04B:A9 0A LDA #$0A

00:B04D:8D FD 5F STA $5FFD = #$FF

00:B050:A9 0B LDA #$0B

00:B052:8D FE 5F STA $5FFE = #$FF

00:B055:A9 0C LDA #$0C

00:B057:8D FF 5F STA $5FFF = #$FF

00:B05A:AD 0E 01 LDA $010E = #$00

00:B05D:18 CLC

00:B05E:E9 05 SBC #$05

00:B060:8D 0E 01 STA $010E = #$00

00:B063:4C CF C1 JMP $C1CF

Play Driver Select

00:B0D0:A5 00 LDA $0000 = #$00

00:B0D2:C9 09 CMP #$09

00:B0D4:B0 12 BCS $B0E8

00:B0D6:C9 06 CMP #$06

00:B0D8:B0 0B BCS $B0E5

00:B0DA:C9 03 CMP #$03

00:B0DC:B0 04 BCS $B0E2

00:B0DE:4C 2D B9 JMP $B92D ; sound core 1

00:B0E1:00 BRK

00:B0E2:4C 35 C0 JMP $C035 ; sound core 2

00:B0E5:4C F0 C1 JMP $C1F0 ; sound core 3

00:B0E8:4C 2D C0 JMP $C02D ; sound core 4

 As you can see, that's the strategy I used to rip GLK Dance by Feng Li. It was a fun game to

hack. What I have explained here is loaded banks by the init code, however, there are games

that need to have banks loaded in during the play code and is timing sensitive and beyond the

scope of this level, currently. Once you learn basic bankswitching by init, then you can move

on to the harder bankswitching rips.

